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Abstract

Recent advances in generative modeling have led to an increased interest in the
study of statistical divergences as means of model comparison. Commonly used
evaluation methods, such as the Fréchet Inception Distance (FID), correlate well
with the perceived quality of samples and are sensitive to mode dropping. However,
these metrics are unable to distinguish between different failure cases since they
only yield one-dimensional scores. We propose a novel definition of precision
and recall for distributions which disentangles the divergence into two separate
dimensions. The proposed notion is intuitive, retains desirable properties, and
naturally leads to an efficient algorithm that can be used to evaluate generative
models. We relate this notion to total variation as well as to recent evaluation
metrics such as Inception Score and FID. To demonstrate the practical utility
of the proposed approach we perform an empirical study on several variants of
Generative Adversarial Networks and Variational Autoencoders. In an extensive
set of experiments we show that the proposed metric is able to disentangle the
quality of generated samples from the coverage of the target distribution.

1 Introduction
Deep generative models, such as Variational Autoencoders (VAE) [12] and Generative Adversarial
Networks (GAN) [8], have received a great deal of attention due to their ability to learn complex,
high-dimensional distributions. One of the biggest impediments to future research is the lack of
quantitative evaluation methods to accurately assess the quality of trained models. Without a proper
evaluation metric researchers often need to visually inspect generated samples or resort to qualitative
techniques which can be subjective. One of the main difficulties for quantitative assessment lies in
the fact that the distribution is only specified implicitly – one can learn to sample from a predefined
distribution, but cannot evaluate the likelihood efficiently. In fact, even if likelihood computation were
computationally tractable, it might be inadequate and misleading for high-dimensional problems [22].

As a result, surrogate metrics are often used to assess the quality of the trained models. Some proposed
measures, such as Inception Score (IS) [20] and Fréchet Inception Distance (FID) [9], have shown
promising results in practice. In particular, FID has been shown to be robust to image corruption, it
correlates well with the visual fidelity of the samples, and it can be computed on unlabeled data.

However, all of the metrics commonly applied to evaluating generative models share a crucial
weakness: Since they yield a one-dimensional score, they are unable to distinguish between different
failure cases. For example, the generative models shown in Figure 1 obtain similar FIDs but exhibit
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Figure 1: Comparison of GANs trained on MNIST and CelebA. Although the models obtain a similar FID on
each data set (32/29 for MNIST and 65/62 for CelebA), their samples look very different. For example, the
model on the left produces reasonably looking faces on CelebA, but too many dark images. In contrast, the
model on the right produces more artifacts, but more varied images. By the proposed metric (middle), the models
on the left achieve higher precision and lower recall than the models on the right, which suffices to successfully
distinguishing between the failure cases.

different sample characteristics: the model on the left trained on MNIST [15] produces realistic
samples, but only generates a subset of the digits. On the other hand, the model on the right produces
low-quality samples which appear to cover all digits. A similar effect can be observed on the
CelebA [16] data set. In this work we argue that a single-value summary is not adequate to compare
generative models.

Motivated by this shortcoming, we present a novel approach which disentangles the divergence
between distributions into two components: precision and recall. Given a reference distribution P
and a learned distribution Q, precision intuitively measures the quality of samples from Q, while
recall measures the proportion of P that is covered by Q. Furthermore, we propose an elegant
algorithm which can compute these quantities based on samples from P and Q. In particular, using
this approach we are able to quantify the degree of mode dropping and mode inventing based on
samples from the true and the learned distributions.

Our contributions: (1) We introduce a novel definition of precision and recall for distributions and
prove that the notion is theoretically sound and has desirable properties, (2) we propose an efficient
algorithm to compute these quantities, (3) we relate these notions to total variation, IS and FID, (4) we
demonstrate that in practice one can quantify the degree of mode dropping and mode inventing on real
world data sets (image and text data), and (5) we compare several types of generative models based
on the proposed approach – to our knowledge, this is the first metric that experimentally confirms
the folklore that GANs often produce "sharper" images, but can suffer from mode collapse (high
precision, low recall), while VAEs produce "blurry" images, but cover more modes of the distribution
(low precision, high recall).

2 Background and Related Work

The task of evaluating generative models is an active research area. Here we focus on recent
work in the context of deep generative models for image and text data. Classic approaches relying
on comparing log-likelihood have received some criticism due the fact that one can achieve high
likelihood, but low image quality, and conversely, high-quality images but low likelihood [22]. While
the likelihood can be approximated in some settings, kernel density estimation in high-dimensional
spaces is extremely challenging [22, 24]. Other failure modes related to density estimation in high-
dimensional spaces have been elaborated in [10, 22]. A recent review of popular approaches is
presented in [5].

The Inception Score (IS) [20] offers a way to quantitatively evaluate the quality of generated samples
in the context of image data. Intuitively, the conditional label distribution p(y|x) of samples containing
meaningful objects should have low entropy, while the label distribution over the whole data set
p(y) should have high entropy. Formally, IS(G) = exp(Ex∼G[dKL(p(y|x), p(y)]). The score is
computed based on a classifier (Inception network trained on ImageNet). IS necessitates a labeled
data set and has been found to be weak at providing guidance for model comparison [3].
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Figure 2: Intuitive examples of P and Q.
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Figure 3: PRD(Q,P ) for the examples above.
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Figure 4: Illustration of the algorithm.

The FID [9] provides an alternative approach which requires no labeled data. The samples are first
embedded in some feature space (e.g., a specific layer of Inception network for images). Then,
a continuous multivariate Gaussian is fit to the data and the distance computed as FID(x, g) =

||µx − µg||22 + Tr(Σx + Σg − 2(ΣxΣg)
1
2 ), where µ and Σ denote the mean and covariance of the

corresponding samples. FID is sensitive to both the addition of spurious modes as well as to mode
dropping (see Figure 5 and results in [18]). [4] recently introduced an unbiased alternative to FID,
the Kernel Inception Distance. While unbiased, it shares an extremely high Spearman rank-order
correlation with FID [14].

Another approach is to train a classifier between the real and fake distributions and to use its accuracy
on a test set as a proxy for the quality of the samples [11, 17]. This approach necessitates training of
a classifier for each model which is seldom practical. Furthermore, the classifier might detect a single
dimension where the true and generated samples differ (e.g., barely visible artifacts in generated
images) and enjoy high accuracy, which runs the risk of assigning lower quality to a better model.

To the best of our knowledge, all commonly used metrics for evaluating generative models are
one-dimensional in that they only yield a single score or distance. A notion of precision and recall
has previously been introduced in [18] where the authors compute the distance to the manifold of the
true data and use it as a proxy for precision and recall on a synthetic data set. Unfortunately, it is not
possible to compute this quantity for more complex data sets.

3 PRD: Precision and Recall for Distributions
In this section, we derive a novel notion of precision and recall to compare a distribution Q to a
reference distribution P . The key intuition is that precision should measure how much of Q can be
generated by a “part” of P while recall should measure how much of P can be generated by a “part”
of Q. Figure 2 (a)-(d) show four toy examples for P and Q to visualize this idea: (a) If P is bimodal
and Q only captures one of the modes, we should have perfect precision but only limited recall. (b) In
the opposite case, we should have perfect recall but only limited precision. (c) If Q = P , we should
have perfect precision and recall. (d) If the supports of P and Q are disjoint, we should have zero
precision and recall.

3.1 Derivation
Let S = supp(P ) ∩ supp(Q) be the (non-empty) intersection of the supports2 of P and Q. Then, P
may be viewed as a two-component mixture where the first component PS is a probability distribution
on S and the second component PS is defined on the complement of S. Similarly, Q may be rewritten
as a mixture of QS and QS . More formally, for some ᾱ, β̄ ∈ (0, 1], we define

P = β̄PS + (1− β̄)PS and Q = ᾱQS + (1− ᾱ)QS . (1)

This decomposition allows for a natural interpretation: PS is the part of P that cannot be generated
by Q, so its mixture weight 1− β̄ may be viewed as a loss in recall. Similarly, QS is the part of Q
that cannot be generated by P , so 1− ᾱ may be regarded as a loss in precision. In the case where

2For a distribution P defined on a finite state space Ω, we define supp(P ) = {ω ∈ Ω | P (ω) > 0}.
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PS = QS , i.e., the distributions P and Q agree on S up to scaling, ᾱ and β̄ provide us with a simple
two-number precision and recall summary satisfying the examples in Figure 2 (a)-(d).

If PS 6= QS , we are faced with a conundrum: Should the differences in PS and QS be attributed
to losses in precision or recall? Is QS inadequately “covering” PS or is it generating “unnecessary”
noise? Inspired by PR curves for binary classification, we propose to resolve this predicament by
providing a trade-off between precision and recall instead of a two-number summary for any two
distributions P and Q. To parametrize this trade-off, we consider a distribution µ on S that signifies
a “true” common component of PS and QS and similarly to (1), we decompose both PS and QS as

PS = β′µ+ (1− β′)Pµ and QS = α′µ+ (1− α′)Qµ. (2)

The distribution PS is viewed as a two-component mixture where the first component is µ and the
second component Pµ signifies the part of PS that is “missed” by QS and should thus be considered
a recall loss. Similarly, QS is decomposed into µ and the part Qµ that signifies noise and should thus
be considered a precision loss. As µ is varied, this leads to a trade-off between precision and recall.

It should be noted that unlike PR curves for binary classification where different thresholds lead to
different classifiers, trade-offs between precision and recall here do not constitute different models
or distributions – the proposed PRD curves only serve as a description of the characteristics of the
model with respect to the target distribution.

3.2 Formal definition
For simplicity, we consider distributions P and Q that are defined on a finite state space, though the
notion of precision and recall can be extended to arbitrary distributions. By combining (1) and (2),
we obtain the following formal definition of precision and recall.
Definition 1. For α, β ∈ (0, 1], the probability distribution Q has precision α at recall β w.r.t. P if
there exist distributions µ, νP and νQ such that

P = βµ+ (1− β)νP and Q = αµ+ (1− α)νQ. (3)

The component νP denotes the part of P that is “missed” by Q and encompasses both PS in (1) and
Pµ in (2). Similarly, νQ denotes the noise part of Q and includes both QS in (1) and Qµ in (2).
Definition 2. The set of attainable pairs of precision and recall of a distributionQ w.r.t. a distribution
P is denoted by PRD(Q,P ) and it consists of all (α, β) satisfying Definition 1 and the pair (0, 0).

The set PRD(Q,P ) characterizes the above-mentioned trade-off between precision and recall and can
be visualized similarly to PR curves in binary classification: Figure 3 (a)-(d) show the set PRD(Q,P )
on a 2D-plot for the examples (a)-(d) in Figure 2. Note how the plot distinguishes between (a) and
(b): Any symmetric evaluation method (such as FID) assigns these cases the same score although
they are highly different. The interpretation of the set PRD(Q,P ) is further aided by the following
set of basic properties which we prove in Section A.1 in the appendix.
Theorem 1. Let P and Q be probability distributions defined on a finite state space Ω. The set
PRD(Q,P ) satisfies the following properties:

(i) (1, 1) ∈ PRD(Q,P ) ⇔ Q = P (equality)
(ii) PRD(Q,P ) = {(0, 0)} ⇔ supp(Q) ∩ supp(P ) = ∅ (disjoint supports)

(iii) Q(supp(P )) = ᾱ = max(α,β)∈PRD(Q,P ) α (max precision)

(iv) P (supp(Q)) = β̄ = max(α,β)∈PRD(Q,P ) β (max recall)
(v) (α′, β′) ∈ PRD(Q,P ) if α′ ∈ (0, α], β′ ∈ (0, β], (α, β) ∈ PRD(Q,P ) (monotonicity)

(vi) (α, β) ∈ PRD(Q,P ) ⇔ (β, α) ∈ PRD(P,Q) (duality)

Property (i) in combination with Property (v) guarantees that Q = P if the set PRD(Q,P ) contains
the interior of the unit square, see case (c) in Figures 2 and 3. Similarly, Property (ii) assures that
whenever there is no overlap between P and Q, PRD(Q,P ) only contains the origin, see case (d) of
Figures 2 and 3. Properties (iii) and (iv) provide a connection to the decomposition in (1) and allow
an analysis of the cases (a) and (b) in Figures 2 and 3: As expected, Q in (a) achieves a maximum
precision of 1 but only a maximum recall of 0.5 while in (b), maximum recall is 1 but maximum
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precision is 0.5. Note that the quantities ᾱ and β̄ here are by construction the same as in (1). Finally,
Property (vi) provides a natural interpretation of precision and recall: The precision of Q w.r.t. P is
equal to the recall of P w.r.t. Q and vice versa.

Clearly, not all cases are as simple as the examples (a)-(d) in Figures 2 and 3, in particular if P and
Q are different on the intersection S of their support. The examples (e) and (f) in Figure 2 and the
resulting sets PRD(Q,P ) in Figure 3 illustrate the importance of the trade-off between precision
and recall as well as the utility of the set PRD(Q,P ). In both cases, P and Q have the same support
while Q has high precision and low recall in case (e) and low precision and high recall in case (f).
This is clearly captured by the sets PRD(Q,P ). Intuitively, the examples (e) and (f) may be viewed
as noisy versions of the cases (a) and (b) in Figure 2.

3.3 Algorithm
Computing the set PRD(Q,P ) based on Definitions 1 and 2 is non-trivial as one has to check whether
there exist suitable distributions µ, νP and νQ for all possible values of α and β. We introduce an
equivalent definition of PRD(Q,P ) in Theorem 2 that does not depend on the distributions µ, νP
and νQ and that leads to an elegant algorithm to compute practical PRD curves.
Theorem 2. Let P and Q be two probability distributions defined on a finite state space Ω. For
λ > 0 define the functions

α(λ) =
∑
ω∈Ω

min (λP (ω), Q(ω)) and β(λ) =
∑
ω∈Ω

min

(
P (ω),

Q(ω)

λ

)
. (4)

Then, it holds that

PRD(Q,P ) = {(θα(λ), θβ(λ)) | λ ∈ (0,∞), θ ∈ [0, 1]} .

We prove the theorem in Section A.2 in the appendix. The key idea of Theorem 2 is illustrated in
Figure 4: The set of PRD(Q,P ) may be viewed as a union of segments of the lines α = λβ over
all λ ∈ (0,∞). Each segment starts at the origin (0, 0) and ends at the maximal achievable value
(α(λ), β(λ)). This provides a surprisingly simple algorithm to compute PRD(Q,P ) in practice:
Simply compute pairs of α(λ) and β(λ) as defined in (4) for an equiangular grid of values of λ. For
a given angular resolution m ∈ N, we compute

P̂RD(Q,P ) = {(α(λ), β(λ)) | λ ∈ Λ} where Λ =
{

tan
(

i
m+1

π
2

)
| i = 1, 2, . . . ,m

}
.

To compare different distributions Qi, one may simply plot their respective PRD curves
P̂RD(Qi, P ), while an approximation of the full sets PRD(Qi, P ) may be computed by inter-
polation between P̂RD(Qi, P ) and the origin. An implementation of the algorithm is available at
https://github.com/msmsajjadi/precision-recall-distributions.

3.4 Connection to total variation distance
Theorem 2 provides a natural interpretation of the proposed approach. For λ = 1, we have

α(1) = β(1) =
∑
ω∈Ω

min (P (ω), Q(ω)) =
∑
ω∈Ω

[
P (ω)− (P (ω)−Q(ω))

+
]

= 1− δ(P,Q)

where δ(P,Q) denotes the total variation distance between P and Q. As such, our notion of precision
and recall may be viewed as a generalization of total variation distance.

4 Application to Deep Generative Models
In this section, we show that the algorithm introduced in Section 3.3 can be readily applied to
evaluate precision and recall of deep generative models. In practice, access to P and Q is given
via samples P̂ ∼ P and Q̂ ∼ Q. Given that both P and Q are continuous distributions, the
probability of generating a point sampled from Q is 0. Furthermore, there is strong empirical
evidence that comparing samples in image space runs the risk of assigning higher quality to a worse
model [17, 20, 22]. A common remedy is to apply a pre-trained classifier trained on natural images
and to compare P̂ and Q̂ at a feature level. Intuitively, in this feature space the samples should be
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Figure 5: Left: IS and FID as we remove and add classes of CIFAR-10. IS generally only increases, while
FID is sensitive to both the addition and removal of classes. However, it cannot distinguish between the two
failure cases of inventing or dropping modes. Middle: Resulting PRD curves for the same experiment. As
expected, adding modes leads to a loss in precision (Q6–Q10), while dropping modes leads to a loss in recall
(Q1–Q4). As an example consider Q4 and Q6 which have similar FID, but strikingly different PRD curves. The
same behavior can be observed for the task of text generation, as displayed on the plot on the right. For this
experiment, we set P to contain samples from all classes so the PRD curves demonstrate the increase in recall as
we increase the number of classes in Q.

compared based on statistical regularities in the images rather than random artifacts resulting from
the generative process [17, 19].

Following this line of work, we first use a pre-trained Inception network to embed the samples (i.e.
using the Pool3 layer [9]). We then cluster the union of P̂ and Q̂ in this feature space using mini-batch
k-means with k = 20 [21]. Intuitively, we reduce the problem to a one dimensional problem where
the histogram over the cluster assignments can be meaningfully compared. Hence, failing to produce
samples from a cluster with many samples from the true distribution will hurt recall, and producing
samples in clusters without many real samples will hurt precision. As the clustering algorithm is
randomized, we run the procedure several times and average over the PRD curves. We note that such
a clustering is meaningful as shown in Figure 9 in the appendix and that it can be efficiently scaled to
very large sample sizes [1, 2].

We stress that from the point of view of the proposed algorithm, only a meaningful embedding is
required. As such, the algorithm can be applied to various data modalities. In particular, we show in
Section 4.1 that besides image data the algorithm can be applied to a text generation task.

4.1 Adding and dropping modes from the target distribution
Mode collapse or mode dropping is a major challenge in GANs [8, 20]. Due to the symmetry of
commonly used metrics with respect to precision and recall, the only way to assess whether the model
is producing low-quality images or dropping modes is by visual inspection. In stark contrast, the
proposed metric can quantitatively disentangle these effects which we empirically demonstrate.

We consider three data sets commonly used in the GAN literature: MNIST [15], Fashion-MNIST [25],
and CIFAR-10 [13]. These data sets are labeled and consist of 10 balanced classes. To show the
sensitivity of the proposed measure to mode dropping and mode inventing, we first fix P̂ to contain
samples from the first 5 classes in the respective test set. Then, for a fixed i = 1, . . . , 10, we generate
a set Q̂i, which consists of samples from the first i classes from the training set. As i increases, Q̂i
covers an increasing number of classes from P̂ which should result in higher recall. As we increase i
beyond 5, Q̂i includes samples from an increasing number of classes that are not present in P̂ which
should result in a loss in precision, but not in recall as the other classes are already covered. Finally,
the set Q̂5 covers the same classes as P̂ , so it should have high precision and high recall.

Figure 5 (left) shows the IS and FID for the CIFAR-10 data set (results on the other data sets are
shown in Figure 11 in the appendix). Since the IS is not computed w.r.t. a reference distribution, it is
invariant to the choice of P̂ , so as we add classes to Q̂i, the IS increases. The FID decreases as we
add more classes until Q̂5 before it starts to increase as we add spurious modes. Critically, FID fails
to distinguish the cases of mode dropping and mode inventing: Q̂4 and Q̂6 share similar FIDs. In
contrast, Figure 5 (middle) shows our PRD curves as we vary the number of classes in Q̂i. Adding
correct modes leads to an increase in recall, while adding fake modes leads to a loss of precision.

6



0 1 2 3 4 5 6 7 8 9
Class label

0

1k

2k

3k

4k

5k

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

left

right

0 1 2 3 4 5 6 7 8 9
Class label

0

1k

2k

3k

4k

5k

Figure 6: Comparing two GANs trained on MNIST which both achieve an FID of 49. The model on the left
seems to produce high-quality samples of only a subset of digits. On the other hand, the model on the right
generates low-quality samples of all digits. The histograms showing the corresponding class distributions based
on a trained MNIST classifier confirm this observation. At the same time, the classifier is more confident which
indicates different levels of precision (96.7% for the model on the left compared to 88.6% for the model on the
right). Finally, we note that the proposed PRD algorithm does not require labeled data, as opposed to the IS
which further needs a classifier that was trained on the respective data set.

We also apply the proposed approach on text data as shown in Figure 5 (right). In particular, we use
the MultiNLI corpus of crowd-sourced sentence pairs annotated with topic and textual entailment
information [23]. After discarding the entailment label, we collect all unique sentences for the same
topic. Following [6], we embed these sentences using a BiLSTM with 2048 cells in each direction
and max pooling, leading to a 4096-dimensional embedding [7]. We consider 5 classes from this
data set and fix P̂ to contain samples from all classes to measure the loss in recall for different Qi.
Figure 5 (right) curves successfully demonstrate the sensitivity of recall to mode dropping.

4.2 Assessing class imbalances for GANs

In this section we analyze the effect of class imbalance on the PRD curves. Figure 6 shows a pair of
GANs trained on MNIST which have virtually the same FID, but very different PRD curves. The
model on the left generates a subset of the digits of high quality, while the model on the right seems
to generate all digits, but each has low quality. We can naturally interpret this difference via the PRD
curves: For a desired recall level of less than ∼0.6, the model on the left enjoys higher precision
– it generates several digits of high quality. If, however, one desires a recall higher than ∼0.6, the
model on the right enjoys higher precision as it covers all digits. To confirm this, we train an MNIST
classifier on the embedding of P̂ with the ground truth labels and plot the distribution of the predicted
classes for both models. The histograms clearly show that the model on the left failed to generate all
classes (loss in recall), while the model on the right is producing a more balanced distribution over
all classes (high recall). At the same time, the classifier has an average confidence3 of 96.7% on the
model on the left compared to 88.6% on the model on the right, indicating that the sample quality of
the former is higher. This aligns very well with the PRD plots: samples on the left have high quality
but are not diverse in contrast to the samples on the right which are diverse but have low quality.

This analysis reveals a connection to IS which is based on the premise that the conditional label
distribution p(y|x) should have low entropy, while the marginal p(y) =

∫
p(y|x = G(z))dz should

have high entropy. To further analyze the relationship between the proposed approach and PRD
curves, we plot p(y|x) against precision and p(y) against recall in Figure 10 in the appendix. The
results over a large number of GANs and VAEs show a large Spearman correlation of -0.83 for
precision and 0.89 for recall. We however stress two key differences between the approaches: Firstly,
to compute the quantities in IS one needs a classifier and a labeled data set in contrast to the proposed
PRD metric which can be applied on unlabeled data. Secondly, IS only captures losses in recall w.r.t.
classes, while our metric measures more fine-grained recall losses (see Figure 8 in the appendix).

3We denote the output of the classifier for its highest value at the softmax layer as confidence. The intuition
is that higher values signify higher confidence of the model for the given label.
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Figure 7: F1/8 vs F8 scores for a large number of GANs and VAEs on the Fashion-MNIST data set. For each
model, we plot the maximum F1/8 and F8 scores to show the trade-off between precision and recall. VAEs
generally achieve lower precision and/or higher recall than GANs which matches the folklore that VAEs often
produce samples of lower quality while being less prone to mode collapse. On the right we show samples
from four models which correspond to various success/failure modes: (A) high precision, low recall, (B) high
precision, high recall, (C) low precision, low recall, and (D) low precision, high recall.

4.3 Application to GANs and VAEs
We evaluate the precision and recall of 7 GAN types and the VAE with 100 hyperparameter settings
each as provided by [18]. In order to visualize this vast quantity of models, one needs to summarize
the PRD curves. A natural idea is to compute the maximum F1 score, which corresponds to the
harmonic mean between precision and recall as a single-number summary. This idea is fundamentally
flawed as F1 is symmetric. However, its generalization, defined as Fβ = (1 + β2) p·r

(β2p)+r , provides
a way to quantify the relative importance of precision and recall: β > 1 weighs recall higher than
precision, whereas β < 1 weighs precision higher than recall. As a result, we propose to distill each
PRD curve into a pair of values: Fβ and F1/β .

Figure 7 compares the maximum F8 with the maximum F1/8 for these models on the Fashion-MNIST
data set. We choose β = 8 as it offers a good insight into the bias towards precision versus recall.
Since F8 weighs recall higher than precision and F1/8 does the opposite, models with higher recall
than precision will lie below the diagonal F8 = F1/8 and models with higher precision than recall
will lie above. To our knowledge, this is the first metric which confirms the folklore that VAEs are
biased towards higher recall, but may suffer from precision issues (e.g., due to blurring effects), at
least on this data set. On the right, we show samples from four models on the extreme ends of the
plot for all combinations of high and low precision and recall. We have included similar plots on the
MNIST, CIFAR-10 and CelebA data sets in the appendix.

5 Conclusion
Quantitatively evaluating generative models is a challenging task of paramount importance. In this
work we show that one-dimensional scores are not sufficient to capture different failure cases of
current state-of-the-art generative models. As an alternative, we propose a novel notion of precision
and recall for distributions and prove that both notions are theoretically sound and have desirable
properties. We then connect these notions to total variation distance as well as FID and IS and we
develop an efficient algorithm that can be readily applied to evaluate deep generative models based on
samples. We investigate the properties of the proposed algorithm on real-world data sets, including
image and text generation, and show that it captures the precision and recall of generative models.
Finally, we find empirical evidence supporting the folklore that VAEs produce samples of lower
quality, while being less prone to mode collapse than GANs.
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A Proofs

We first show the following auxiliary result and then prove Theorems 1 and 2.
Lemma 1. Let P and Q be probability distributions defined on a finite state space Ω. Let α ∈ (0, 1]
and β ∈ (0, 1]. Then, (α, β) ∈ PRD(Q,P ) if and only if there exists a distribution µ such that for
all ω ∈ Ω

P (ω) ≥ βµ(ω) and Q(ω) ≥ αµ(ω). (5)

Proof. If (α, β) ∈ PRD(Q,P ), then (3) and the non-negativity of νP and νQ directly imply (5) for
the same choice of µ. Conversely, if (5) holds for a distribution µ, we may define the distributions

νP (ω) =
P (ω)− βµ(ω)

1− β and νQ(ω) =
Q(ω)− αµ(ω)

1− α .

By definition α, β, µ, νP and νQ satisfy (3) in Definition 1 which implies (α, β) ∈ PRD(Q,P ).

A.1 Proof of Theorem 1

Proof. We show each of the properties independently:

(i) Equality: If (1, 1) ∈ PRD(Q,P ), then we have by Definition 1 that P = µ and Q = µ which
implies P = Q as claimed. Conversely, if P = Q, Definition 1 is satisfied for α = β = 1 by
choosing µ = νP = νQ = P . Hence, (1, 1) ∈ PRD(Q,P ) as claimed.

(ii) Disjoint support: We show both directions of the claim by contraposition, i.e., we show supp(P )∩
supp(Q) 6= ∅ ⇔ PRD(Q,P ) ⊃ {(0, 0)}. Consider an arbitrary ω ∈ supp(P ) ∩ supp(Q). Then,
by definition we have P (ω) > 0 and Q(ω) > 0. Let µ be defined as the distribution with µ(ω) = 1
and µ(ω′) = 0 for all ω′ ∈ Ω\{ω}. Clearly, it holds that P (ω) ≥ P (ω)µ(ω) andQ(ω) ≥ Q(ω)µ(ω)
for all ω ∈ Ω. Hence, by Lemma 1, we have (Q(ω), P (ω)) ∈ PRD(Q,P ) which implies that
PRD(Q,P ) ⊃ {(0, 0)} as claimed. Conversely, PRD(Q,P ) ⊃ {(0, 0)} implies by Lemma 1 that
there exist α ∈ (0, 1] and β ∈ (0, 1] as well as a distribution µ satisfying (5). Let ω ∈ supp(µ) which
implies µ(ω) > 0 and thus by (5) also P (ω) > 0 and Q(ω) > 0. Hence, ω is both in the support of
P and Q which implies supp(P ) ∩ supp(Q) 6= ∅ as claimed.

(iii) Maximum precision: If (α, β) ∈ PRD(Q,P ), then by Lemma 1 there exists a distribution µ
such that for all ω ∈ Ω we have P (ω) ≥ βµ(ω) and Q(ω) ≥ αµ(ω). P (ω) ≥ βµ(ω) implies
supp(µ) ⊆ supp(P ) and hence

∑
ω∈supp(P ) µ(ω) = 1. Together with Q(ω) ≥ αµ(ω), this yields

Q(supp(P )) =
∑
ω∈supp(P )Q(ω) ≥ α

∑
ω∈supp(P ) µ(ω) = α which implies α ≤ Q(supp(P ))

for all (α, β) ∈ PRD(Q,P ).

To prove the claim, we next show that there exists (α, β) ∈ PRD(Q,P ) with α = Q(supp(P )).
Let S = supp(P ) ∩ supp(Q). If S = ∅, then α = Q(supp(P )) = 0 and (0, 0) ∈ PRD(Q,P ) by
Definition 2 as claimed. For the case S 6= ∅, let β = minω∈S

P (ω)Q(S)
Q(ω) . By definition of S, we

have β > 0. Furthermore, β ≤ P (S) ≤ 1 since P (ω)
P (S) ≤

Q(ω)
Q(S) for at least one ω ∈ S. Consider the

distribution µ where µ(ω) = Q(ω)
Q(S) for all ω ∈ S and µ(ω) = 0 for ω ∈ Ω \ S. By construction, µ

satisfies (5) in Lemma 1 and hence (α, β) ∈ PRD(Q,P ) as claimed.

(iv) Maximum recall: This follows directly from applying Property (vi) to Property (iii).

(v) Monotonicity: If (α, β) ∈ PRD(Q,P ), then by Lemma 1 there exists a distribution µ such that
for all ω ∈ Ω we have that P (ω) ≥ βµ(ω) and Q(ω) ≥ αµ(ω). For α′ ∈ (0, α] and β′ ∈ (0, β],
it follows that P (ω) ≥ β′µ(ω) and Q(ω) ≥ α′µ(ω) for all ω ∈ Ω. By Lemma 1 this implies
(α′, β′) ∈ PRD(Q,P ) as claimed.

(vi) Duality: This follows directly from switching α with β, P with Q and νP with νQ in Definition 1.
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A.2 Proof of Theorem 2

Proof. We first show that PRD(Q,P ) ⊆ {(θα(λ), θβ(λ)) | λ ∈ (0,∞), θ ∈ [0, 1]}. We consider
an arbitrary element (α′, β′) ∈ PRD(Q,P ) and show that (α′, β′) = (θα(λ), θβ(λ)) for some
λ ∈ (0,∞) and θ ∈ [0, 1]. For the case (α′, β′) = (0, 0), the result holds trivially for the choice
of λ = 1 and θ = 0. For the case (α′, β′) 6= (0, 0), we choose λ = α′

β′ and θ = β′

β(λ) . Since
α(λ) = λβ(λ) by definition, this implies (α′, β′) = (θα(λ), θβ(λ)) as required. Furthermore,
λ ∈ (0,∞) since by Definitions 1 and 2 α′ > 0 if and only if β′ > 0. Similarly, we show that
θ ∈ [0, 1]: By Lemma 1 there exists a distribution µ such that β′µ(ω) ≤ P (ω) and α′µ(ω) ≤ Q(ω)

for all ω ∈ Ω. This implies that β′µ(ω) ≤ Q(ω)
λ and thus β′µ(ω) ≤ min

(
P (ω), Q(ω)

λ

)
for all

ω ∈ Ω. Summing over all ω ∈ Ω, we obtain β′ ≤∑ω∈Ω min
(
P (ω), Q(ω)

λ

)
= β(λ) which implies

θ ∈ [0, 1].

Finally, we show that PRD(Q,P ) ⊇ {(θα(λ), θβ(λ)) | λ ∈ (0,∞), θ ∈ [0, 1]}. Consider arbitrary
λ ∈ (0,∞) and θ ∈ [0, 1]. If β(λ) = 0, the claim holds trivially since (0, 0) ∈ PRD(Q,P ).
Otherwise, define the distribution µ by µ(ω) = min

(
P (ω), Q(ω)

λ

)
/β(λ) for all ω ∈ Ω. By

definition, β(λ)µ(ω) ≤ min
(
P (ω), Q(ω)

λ

)
≤ P (ω) for all ω ∈ Ω. Similarly, α(λ)µ(ω) ≤

min (λP (ω), Q(ω)) ≤ Q(ω) for all ω ∈ Ω since α(λ) = λβ(λ). Because θ ∈ [0, 1], this
implies θβ(λ)µ(ω) ≤ P (ω) and θα(λ)µ(ω) ≤ Q(ω) for all ω ∈ Ω. Hence, by Lemma 1,
(θα(λ), θβ(λ)) ∈ PRD(Q,P ) for all λ ∈ (0,∞) and θ ∈ [0, 1] as claimed.

B Further figures
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Figure 8: Comparing a pair of GANs on MNIST which have both collapsed to producing 1’s. An analysis
with a trained classifier as in Section 4.2 comes to the same conclusion for both models, namely, that they have
collapsed to producing 1’s only. However, the PRD curve shows that the model on the right has a slightly higher
recall. This is indeed correct: while the model on the left is producing straight 1’s only, the model on the right is
producing some more varied shapes such as tilted 1’s.
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Real images Generated images

Figure 9: Clustering the real and generated samples from a GAN in feature space (10 cluster centers for
visualization) yields the clusters above for the data sets MNIST, Fashion-MNIST, CIFAR-10 and CelebA.
Although the GAN samples are not perfect, they are clustered in a meaningful way.
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Figure 10: Comparing our unsupervised F1/8 and F8 measures with the supervised measures P (y|x) and P (y)
similar to the IS (for a definition of Fβ , see Section 4.3). Each circle represents a trained generative model (GAN
or VAE) on the MNIST data set. The values show a fairly high correlation with a Spearman rank correlation
coefficient of -0.83 on the left and 0.89 on the right.
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Figure 11: Corresponding plots as in Figure 5 for the data sets MNIST (top) and Fashion-MNIST (bottom).
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Figure 12: Corresponding plots as in Figure 7 for the data sets MNIST (top), CIFAR-10 (middle) and CelebA
(bottom).
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