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Abstract

Uniform deviation bounds limit the difference be-
tween a model’s expected loss and its loss on a
random sample uniformly for all models in a learn-
ing problem. In this paper, we provide a novel
framework to obtain uniform deviation bounds
for unbounded loss functions. As a result, we
obtain competitive uniform deviation bounds for
k-Means clustering under weak assumptions on
the underlying distribution. If the fourth moment
is bounded, we prove a rate of O

(
m−

1
2

)
com-

pared to the previously known O
(
m−

1
4

)
rate.

We further show that this rate also depends on the
kurtosis — the normalized fourth moment which
measures the “tailedness” of the distribution. We
also provide improved rates under progressively
stronger assumptions, namely, bounded higher
moments, subgaussianity and bounded support of
the underlying distribution.

1. Introduction
Empirical risk minimization — i.e. the training of models on
a finite sample drawn i.i.d from an underlying distribution
— is a central paradigm in machine learning. The hope is
that models trained on the finite sample perform provably
well even on previously unseen samples from the underly-
ing distribution. But how many samples m are required
to guarantee a low approximation error ε? Uniform devi-
ation bounds provide the answer. Informally, they are the
worst-case difference across all possible models between
the empirical loss of a model and its expected loss. As such,
they determine how many samples are required to achieve a
fixed error in terms of the loss function. In this paper, we
consider the popular k-Means clustering problem and pro-
vide uniform deviation bounds based on weak assumptions
on the underlying data generating distribution.
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Related work. Traditional Vapnik-Chervonenkis theory
provides tools to obtain uniform deviation bounds for bi-
nary concept classes such as classification using halfspaces
(Vapnik & Chervonenkis, 1971). While these results have
been extended to provide uniform deviation bounds for sets
of continuous functions bounded in [0, 1] (Haussler, 1992;
Li et al., 2001), these results are not readily applied to k-
Means clustering as the underlying loss function in k-Means
clustering is continuous and unbounded.

In their seminal work, Pollard (1981) shows that k-Means
clustering is strongly consistent, i.e., that the optimal cluster
centers on a random sample converge almost surely to the
optimal centers of the distribution under a weak assump-
tion. This has sparked a long line of research on cluster
stability (Ben-David et al., 2006; Rakhlin & Caponnetto,
2007; Shamir & Tishby, 2007; 2008) which investigates the
convergence of optimal parameters both asymptotically and
for finite samples. The vector quantization literature offers
insights into the convergence of empirically optimal quan-
tizers for k-Means in terms of the objective: A minimax
rate of O

(
m−

1
2

)
is known if the underlying distribution

has bounded support (Linder et al., 1994; Bartlett et al.,
1998). A better rate of O

(
m−1

)
may be achieved for fi-

nite support (Antos et al., 2005) or under both bounded
support and regularity assumptions (Levrard et al., 2013).
Ben-David (2007) provides a uniform convergence result for
center based clustering under a bounded support assumption
and Telgarsky & Dasgupta (2013) prove uniform deviation
bounds for k-Means clustering if the underlying distribution
satisfies moment assumptions (see Section 4).

Empirical risk minimization with fat-tailed losses has been
studied in Mendelson et al. (2014), Mendelson (2014),
Grünwald & Mehta (2016) and Dinh et al. (2016). Dinh et al.
(2016) provide fast learning rates for k-Means clustering
but under stronger assumptions than the ones considered in
this paper. Guarantees similar to uniform deviation bounds
can be obtained using importance sampling in the context
of coreset construction (Bachem et al., 2015; Lucic et al.,
2016; 2017).

Our contributions. We provide a new framework to obtain
uniform deviation bounds for unbounded loss functions. We
apply it to k-Means clustering and provide uniform devi-
ation bounds with a rate of O

(
m−

1
2

)
for finite samples
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under weak assumptions. In contrast to prior work, our
bounds are all scale-invariant and hold for any set of k clus-
ter centers (not only for a restricted solution set). We show
that convergence depends on the kurtosis of the underly-
ing distribution, which is the normalized fourth moment
and measures the “tailedness” of a distribution. If bounded
higher moments are available, we provide improved bounds
that depend upon the normalized higher moments and we
sharpen them even further under the stronger assumptions
of subgaussianity and bounded support.

2. Problem statement for k-Means
We first focus on uniform deviation bounds for k-Means
clustering, and defer the (more technical) framework for
unbounded loss functions to Section 5. We consider the
d-dimensional Euclidean space and define

d(x,Q)2 = min
q∈Q
‖x− q‖22

for any x ∈ Rd and any finite set Q ⊂ Rd. Furthermore,
slightly abusing the notation, for any x, y ∈ Rd, we set
d(x, y)2 = d(x, {y})2 = ‖x− y‖22.

Statistical k-Means. Let P be any distribution on Rd with
µ = EP [x] and σ2 = EP

[
d(x, µ)2

]
∈ (0,∞). For any set

Q ⊂ Rd of k ∈ N cluster centers, the expected quantization
error is given by EP

[
d(x,Q)2

]
. The goal of the statistical

k-Means problem is to find a set of k cluster centers such
that the expected quantization error is minimized.

Empirical k-Means. Let X denote a finite set of points in
Rd. The goal of the empirical k-Means problem is to find
a set Q of k cluster centers in Rd such that the empirical
quantization error φX (Q) is minimized, where

φX (Q) =
1

|X |
∑
x∈X

d(x,Q)2.

Empirical risk minimization. In practice, the underlying
data distribution P in statistical learning problems is often
unknown. Instead, one is only able to observe independent
samples from P . The empirical risk minimization principle
advocates that finding a good solution on a random sam-
ple Xm also provides provably good solutions to certain
statistical learning problems if enough samples m are used.

Uniform deviation bounds. For k-Means, such a result
may be shown by bounding the deviation between the ex-
pected loss and the empirical error, i.e.,∣∣φXm(Q)− EP

[
d(x,Q)2

]∣∣ ,
uniformly for all possible clusterings Q ∈ Rd×k. If this
difference is sufficiently small for a given m, one may then
solve the empirical k-Means problem on Xm and obtain
provable guarantees on the expected quantization error.

3. Uniform deviation bounds for k-Means
A simple approach would be to bound the deviation by an
absolute error ε, i.e., to require that∣∣φXm(Q)− EP

[
d(x,Q)2

]∣∣ ≤ ε (1)

uniformly for a set of possible solutions (Telgarsky & Das-
gupta, 2013). However, in this paper, we provide uniform
deviation bounds of a more general form: For any distri-
bution P and a sample of m = f(ε, δ, k, d, P ) points, we
require that with probability at least 1− δ∣∣φXm(Q)− EP

[
d(x,Q)2

]∣∣ ≤ ε

2
σ2 +

ε

2
EP
[
d(x,Q)2

]
(2)

uniformly for all Q ∈ Rd×k. The terms on the right-hand
side may be interpreted as follows: The first term based on
the variance σ2 corresponds to a scale-invariant, additive
approximation error. The second term is a multiplicative ap-
proximation error that allows the guarantee to hold even for
solutionsQwith a large expected quantization error. Similar
additive error terms were recently explored by Bachem et al.
(2016; 2017) in the context of seeding for k-Means.

There are three key reasons why we choose (2) over (1):
First, (1) is not scale-invariant and may thus not hold for
classes of distributions that are equal up to scaling. Sec-
ond, (1) may not hold for an unbounded solution space, e.g.
Rd×k. Third, we can always rescale P to unit variance and
restrict ourselves to solutions Q with EP

[
d(x,Q)2

]
≤ σ2.

Then, (2) implies (1) for a suitable transformation of P .

Importance of scale-invariance. If we scale all the points
in a data set X and all possible sets of solutions Q by some
λ > 0, then the empirical quantization error is scaled by
λ2. Similarly, if we consider the random variable λx where
x ∼ P , then the expected quantization error is scaled by
λ2. At the same time, the k-Means problem remains the
same: an optimal solution of the scaled problem is simply a
scaled optimal solution of the original problem. Crucially,
however, it is impossible to achieve the guarantee in (1) for
distributions that are equal up to scaling: Suppose that (1)
holds for some error tolerance ε, and sample size m with
probability at least 1− δ. Consider a distribution P and a
solution Q ∈ Rd×k such that with probability at least δ

a <
∣∣φXm(Q)− EP

[
d(x,Q)2

]∣∣ .
for some a > 0.1 For λ > 1√

aε
, let P̃ be the distribution of

the random variable λx where x ∼ P and let X̃m consist of
m samples from P̃ . Defining Q̃ = {λq | q ∈ Q}, we have
with probability at least δ∣∣∣φX̃m(Q̃)− EP̃

[
d
(
x, Q̃

)
2
]∣∣∣ > aλ2 > ε

1For example, let P be a nondegenerate multivariate normal
distribution and Q consist of k copies of the origin.
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which contradicts (1) for the distribution P̃ and the solu-
tion Q̃. Hence, (1) cannot hold for both P and its scaled
transformation P̃ .

Unrestricted solution space One way to guarantee scale-
invariance would be require that∣∣φXm(Q)− EP

[
d(x,Q)2

]∣∣ ≤ εσ2 (3)

for allQ ∈ Rd×k. However, while (3) is scale-invariant, it is
also impossible to achieve for all solutions Q as the follow-
ing example shows. For simplicity, consider the 1-Means
problem in 1-dimensional space and let P be a distribution
with zero mean. Let Xm denote m independent samples
from P and denote by µ̂ the mean of Xm. For any finite m,
suppose that µ̂ 6= 0 with high probability2 and consider a
solution Q consisting of a single point q ∈ R. We then have

(4)

∣∣φXm({q})− EP
[
d(x, {q})2

]∣∣
=
∣∣φXm({µ̂}) + d(µ̂, q)2 − σ2 − d(0, q)2

∣∣
=
∣∣φXm({µ̂})− σ2 + q2 − 2qµ̂+ µ̂2 − q2

∣∣
=
∣∣φXm({µ̂})− σ2 + µ̂2 − 2qµ̂

∣∣
Since µ̂ 6= 0 with high probability, clearly this expression
diverges as q → ∞ and thus (3) cannot hold for arbitrary
solutions Q ∈ Rd×k. Intuitively, the key issue is that both
the empirical and the statistical error become unbounded as
q →∞. Previous approaches such as Telgarsky & Dasgupta
(2013) solve this issue by restricting the solution space from
Rd×k to solutions that are no worse than some threshold. In
contrast, we allow the deviation between the empirical and
the expected quantization error to scale with EP

[
d(x,Q)2

]
.

Arbitrary distributions. Finally, we show that we either
need to impose assumptions on P or equivalently make the
relationship between m, ε and δ in (2) depend on the under-
lying distribution P . Suppose that there exists a sample size
m ∈ N, an error tolerance ε ∈ (0, 1) and a maximal failure
probability δ ∈ (0, 1) such that (2) holds for any distribution
P . Let P be the Bernoulli distribution on {0, 1} ⊂ R with
P [x = 1] = p for p ∈ (δ

1
m , 1). By design, we have µ = p,

σ2 = p(1− p) and EP
[
d(x, 1)2

]
= (1− p). Furthermore,

with probability at least δ, the set Xm of m independent
samples from P consists of m copies of a point at one.
Hence, (2) implies that with probability at least 1− δ∣∣φXm(1)− EP

[
d(x, 1)2

]∣∣ ≤ εEP [d(x, 1)2
]

since σ2 ≤ EP
[
d(x, 1)2

]
. However, with probability at

least δ, we have φXm(1) = 0 which would imply 1 ≤ ε and
thus lead to a contradiction with ε ∈ (0, 1).

2For example, if P is the standard normal distribution.

4. Key results for k-Means
In this section, we present our main results for k-Means and
defer the analysis and proofs to Sections 6.

4.1. Kurtosis bound

Similar to Telgarsky & Dasgupta (2013), the weakest as-
sumption that we require is that the fourth moment of
d(x, µ) for x ∈ P is bounded.3 Our results are based on the
kurtosis of P which we define as

M̂4 =
EP
[
d(x, µ)4

]
σ4

.

The kurtosis is the normalized fourth moment and is a scale-
invariant measure of the “tailedness” of a distribution. For
example, the normal distribution has a kurtosis of 3, while
more heavy tailed distributions such as the t-Student dis-
tribution or the Pareto distribution have a potentially un-
bounded kurtosis. A natural interpretation of the kurtosis is
provided by Moors (1986). For simplicity, consider a data
set with unit variance. Then, the kurtosis may be restated as
the shifted variance of d(x, µ)2, i.e.,

M̂4 = Var
(
d(x, µ)2

)
+ 1.

This provides a valuable insight into why the kurtosis is rel-
evant for our setting: For simplicity, suppose we would like
to estimate the expected quantization error EP

[
d(x, µ)2

]
by the empirical quantization error φXm({µ}) on a finite
sample Xm.4 Then, the kurtosis measures the dispersion
of d(x, µ)2 around its mean EP

[
d(x, µ)2

]
and provides a

bound on how many samples are required to achieve an error
of ε. While this simple example provides the key insight
for the trivial solution Q = {µ}, it requires a non-trivial
effort to extend the guarantee in (2) to hold uniformly for
all solutions Q ∈ Rd×k.

With the use of a novel framework to learn unbounded loss
functions (presented in Section 5), we are able to provide
the following guarantee for k-Means.
Theorem 1 (Kurtosis). Let ε, δ ∈ (0, 1) and k ∈ N. Let P
be any distribution on Rd with kurtosis M̂4 <∞. For

m ≥
12800

(
8 + M̂4

)
ε2δ

(
3 + 30k(d+ 4) log 6k + log

1

δ

)
let X = {x1, x2, . . . , xm} be m independent samples from
P . Then, with probability at least 1− δ, for all Q ∈ Rd×k∣∣φX (Q)− EP

[
d(x,Q)2

]∣∣ ≤ ε

2
σ2 +

ε

2
EP
[
d(x,Q)2

]
.

3While our random variables x ∈ P are potentially multivari-
ate, it suffices to consider the behavior of the univariate random
variable d(x, µ) for the assumptions in this section.

4This is a hypothetical exercise as EP

[
d(x, µ)2

]
= 1 by de-

sign. However, it provides an insight to the importance of the
kurtosis.
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The proof is provided in Section 6.1. The number of suffi-
cient samples

m ∈ O

(
M̂4

ε2δ

(
dk log k + log

1

δ

))

is linear in the kurtosis M̂4 and the dimensionality d, near-
linear in the number of clusters k and 1

δ , and quadratic in
1
ε . Intuitively, the bound may be interpreted as follows:

Ω
(
M̂4

ε2δ

)
samples are required such that the guarantee holds

for a single solution Q ∈ Rd×k. Informally, a generaliza-
tion of the Vapnik Chervonenkis dimension for k-Means
clustering may be bounded by O(dk log k) and measures
the “complexity” of the learning problem. The multiplica-
tive dk log k + log 1

δ term intuitively extends the guarantee
uniformly to all possible Q ∈ Rd×k.

Comparison to Telgarsky & Dasgupta (2013). While we
require a bound on the normalized fourth moment, i.e., the
kurtosis, Telgarsky & Dasgupta (2013) consider the case
where all unnormalized moments up to the fourth are uni-
formly bounded by some M , i.e.,

EP
[
d(x, µ)l

]
≤M, 1 ≤ l ≤ 4.

They provide uniform deviation bounds for all solutions Q
such that either φX (Q) ≤ c or EP

[
d(x,Q)2

]
≤ c for some

c > 0. To compare our bounds, we consider a data set with
unit variance and restrict ourselves to solutions Q ∈ Rd×k
with an expected quantization error of at most the variance,
i.e., EP

[
d(x,Q)2

]
≤ σ2 = 1. Consider the deviation

∆ = sup
Q∈Rd×k:EP [d(x,Q)2]≤1

∣∣φX (Q)− EP
[
d(x,Q)2

]∣∣ .
Telgarsky & Dasgupta (2013) bound this deviation by

∆ ∈ O

(√
M2

√
m

(
dk log(Mdm) + log

1

δ

)
+

√
1

mδ2

)
.

In contrast, our bound in Theorem 1 implies

∆ ∈ O

√M̂4

mδ

(
dk log k + log

1

δ

).
The key difference lies in how ∆ scales with the sample
size m. While Telgarsky & Dasgupta (2013) show a rate of
∆ ∈ O

(
m−

1
4

)
, we improve it to ∆ ∈ O

(
m−

1
2

)
.

4.2. Bounded higher moments

The tail behavior of d(x, µ) may be characterized by the
moments of P . For p ∈ N, consider the standardized p-th
moment of P , i.e.,

M̂p =
EP [d(x, µ)p]

σp
.

Theorem 2 provides an improved uniform deviation bound
if P has bounded higher moments.
Theorem 2 (Moment bound). Let ε ∈ (0, 1), δ ∈ (0, 1)
and k ∈ N. Let P be any distribution on Rd with finite p-th
order moment bound M̂p <∞ for p ∈ {4, 8, . . . ,∞}. For

m ≥ max
(

3200m1

ε2 ,
(

8
δ

) 8
p

)
with

m1 = p

(
4 + M̂p

4
p

)(
3 + 30k(d+ 4) log 6k + log

1

δ

)
let X = {x1, x2, . . . , xm} be m independent samples from
P . Then, with probability at least 1− δ, for all Q ∈ Rd×k∣∣φX (Q)− EP

[
d(x,Q)2

]∣∣ ≤ ε

2
σ2 +

ε

2
EP
[
d(x,Q)2

]
.

The proof is provided in Section 6.2. Compared to the
previous bound based on the kurtosis, Theorem 2 requires

m ∈ Ω

pM̂p

4
p

ε2

(
dk log k + log

1

δ

)
+

(
1

δ

) 8
p


samples. With higher order moment bounds, it is easier to
achieve high probability results since the dependence on 1

δ

is only of O
((

1
δ

) 8
p

)
compared to near linear for a kurtosis

bound. The quantity M̂p

4
p may be interpreted as a bound on

the kurtosis M̂4 based on the higher order moment M̂p since

Hoelder’s inequality implies that M̂4 ≤ M̂p

4
p . While the

result only holds for p ∈ {8, 12, 16, . . . ,∞}, it is trivially
extended to p′ ≥ 8: Consider Theorem 2 with p = 4

⌊
p′

4

⌋
and note that by Hoelder’s inequality M̂p

4
p ≤ M̂p′

4
p′ .

Comparison to Telgarsky & Dasgupta (2013). Again,
we consider distributions P that have unit variance and
we restrict ourselves to solutions Q ∈ Rd×k with an
expected quantization error of at most the variance, i.e.,
EP
[
d(x,Q)2

]
≤ σ2 = 1. Telgarsky & Dasgupta (2013)

require that there exists a bound M

EP
[
d(x, µ)l

]
≤M, 1 ≤ l ≤ p.

Then, for m sufficiently large, ∆ is of

O

√ M
8
p

m1− 4
p

(
dk ln(M

4
p dm) + ln

1

δ

)
+

2
p
4

m
3
4−

2
p

(
1

δ

) 4
p

.
In contrast, we obtain that, for m sufficiently large,

∆ ∈ O


√√√√pM̂p

4
p

m

(
dk log k + log

1

δ

).
While Telgarsky & Dasgupta (2013) only show a rate of
O
(
m−

1
2

)
as p→∞, we obtain a ∈ O

(
m−

1
2

)
rate for all

higher moment bounds.
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4.3. Subgaussianity

If the distribution P is subgaussian, then all its moments
M̂p are bounded. By optimizing p in Theorem 2, we are
able to show the following bound.

Theorem 3 (Subgaussian bound). Let ε ∈ (0, 1), δ ∈ (0, 1)
and k ∈ N. Let P be any distribution on Rd with µ =
EP [x] and

∀t > 0 : P [d(x, µ) > tσ] ≤ a exp

(
− t2√

b

)
for some a > 1, b > 0. Let m ≥ 3200m1

ε2 with

m1 = p

(
4 +

abp2

4

)(
3 + 30k(d+ 4) log 6k + log

1

δ

)
.

and p = 9 + 3 log 1
δ . Let X = {x1, x2, . . . , xm} be m

independent samples from P . Then, with probability at least
1− δ, for all Q ∈ Rd×k∣∣φX (Q)− EP

[
d(x,Q)2

]∣∣ ≤ ε

2
σ2 +

ε

2
EP
[
d(x,Q)2

]
.

The proof is provided in Section 6.3. In O(·) notation,

m ∈ O

(
ab log3 1

δ

σε2

(
dk log k + log

1

δ

))
samples are hence sufficient. This result features a poly-
logarithmic dependence on 1

δ compared to the polynomial
dependence for the bounds based on bounded higher mo-
ments. The sufficient sample size further scales linearly
with the (scale-invariant) subgaussianity parameters a and b.
For example, if P is a one-dimensional normal distribution
of any scale, we would have a = 2 and b = 1.

4.4. Bounded support

The strongest assumption that we consider is if the support
of P is bounded by a hypersphere in Rd with diameter
R > 0. This ensures that almost surely d(x, µ) ≤ R and
hence M̂4 ≤ R4

σ4 . This allows us to obtain Theorem 4.

Theorem 4 (Bounded support). Let ε ∈ (0, 1), δ ∈ (0, 1)
and k ∈ N. Let P be any distribution on Rd, with µ =
EP [x] and σ2 = EP

[
d(x, µ)2

]
∈ (0,∞), whose support

is contained in a d-dimensional hypersphere of diameter
R > 0. For

m ≥
12800

(
8 + R4

σ4

)
ε2

(
3 + 30k(d+ 4) log 6k + log

1

δ

)
let X = {x1, x2, . . . , xm} be m independent samples from
P . Then, with probability at least 1− δ, for all Q ∈ Rd×k∣∣φX (Q)− EP

[
d(x,Q)2

]∣∣ ≤ ε

2
σ2 +

ε

2
EP
[
d(x,Q)2

]
.

The proof is provided in Section 6.4. Again, the sufficient
sample size scales linearly with the kurtosis bound R4

σ4 . How-
ever, the bound is only logarithmic in 1

δ .

5. Framework for unbounded loss functions
To obtain the results presented in Section 4, we propose a
novel framework to uniformly approximate the expected
values of a set of unbounded functions based on a random
sample. We consider a function family F mapping from
an arbitrary input space X to R≥0 and a distribution P
on X . We further require a generalization of the Vapnik-
Chervonenkis dimension to continuous, unbounded func-
tions5 — the pseudo-dimension.
Definition 1 (Haussler (1992); Li et al. (2001)). The pseudo-
dimension of a set F of functions from X to R≥0, de-
noted by Pdim(F), is the largest d′ such there is a se-
quence x1, . . . , xd′ of domain elements from X and a se-
quence r1, . . . , rd′ of reals such that for each b1, . . . , bd′ ∈
{above, below}, there is an f ∈ F such that for all
i = 1, . . . , d′, we have f(xi) ≥ ri ⇐⇒ bi = above.

Similar to the VC dimension, the pseudo-dimension mea-
sures the cardinality of the largest subset of X that can be
shattered by the function family F . Informally, the pseudo-
dimension measures the richness of F and plays a critical
role in providing a uniform approximation guarantee across
all f ∈ F . With this notion, we are able to state the main
result in our framework.
Theorem 5. Let ε ∈ (0, 1), δ ∈ (0, 1) and t > 0. Let F
be a family of functions from X to R≥0 with Pdim(F ) =
d < ∞. Let s : X → R≥0 be a function such that s(x) ≥
supf∈F f(x) for all x ∈ X . Let P be any distribution on
X and for

m ≥ 200t

ε2

(
3 + 5d+ log

1

δ

)
,

let x1, x2, . . . , x2m be 2m independent samples from P .

Then, if

EP
[
s(x)2

]
≤ t and P

[
1

2m

2m∑
i=1

s(xi)
2 > t

]
≤ δ

4
,

(5)
it holds with probability at least 1− δ that∣∣∣∣∣ 1

m

m∑
i=1

f(xi)− EP [f(x)]

∣∣∣∣∣ ≤ ε, ∀f ∈ F . (6)

Applying Theorem 5 to a function family F requires three
steps: First, one needs to bound the pseudo-dimension of

5The pseudo-dimension was originally defined for sets of func-
tions mapping to [0, 1] (Haussler, 1992; Li et al., 2001). However,
it is trivially extended to unbounded functions mapping to R≥0.
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F . Second, it is necessary to find a function s : X → R≥0

such that

f(x) ≤ s(x), ∀x ∈ X and ∀f ∈ F .

Ideally, such a bound should be as tight as possible. Third,
one needs to find some t > 0 and a sample size

m ≥ 200t

ε2

(
3 + 5d+ log

1

δ

)
such that

EP
[
s(x)

2
]
≤ t and P

[
1

2m

2m∑
i=1

s(xi)
2
> t

]
≤ δ

4
.

Finding such a bound usually entails examining the tail
behavior of s(x)

2 under P . Furthermore, it is evident that
a bound t may only be found if EP

[
s(x)

2
]

is bounded
and that assumptions on the distribution P are required. In
Section 6, we will see that for k-Means a function s(x)

with EP
[
s(x)

2
]
<∞ may be found if the kurtosis of P is

bounded.

We defer the proof of Theorem 5 to Section B of the Supple-
mentary Materials and provide a short proof sketch that cap-
tures the main insight. The proof is based on symmetrization,
the bounding of covering numbers and chaining — com-
mon techniques in the empirical process literature (Pollard,
1984; Li et al., 2001; Boucheron et al., 2013; Koltchinskii,
2011; van der Vaart & Wellner, 1996). The novelty lies in
considering loss functions f(·) and cover functions s(·) in
Theorem 5 that are potentially unbounded.

Proof sketch. Our proof is based on a double sampling ap-
proach. Let xm+1, xm+2, . . . , x2m be an additional m in-
dependent samples from P and let σ1, σ2, . . . , σm be inde-
pendent random variables uniformly sampled from {−1, 1}.
Then, we show that, if EP

[
s(x)

2
]
≤ t, the probability

of (6) not holding may be bounded by the probability that
there exists a f ∈ F such that∣∣∣∣∣ 1

m

m∑
i=1

σi (f(xi)− f(xi+m))

∣∣∣∣∣ > ε. (7)

We first provide the intuition for a single function f ∈ F and
then show how we extend it to all f ∈ F . While the function
f(x) is not bounded, for a given sample x1, x2, . . . , x2m,
each f(xi) is contained within [0, s(xi)]. Given the sample
x1, x2, . . . , x2m, the random variable σi (f(xi)− f(xi+m)
is bounded in 0±max (s(xi), s(xi+m)) and has zero mean.
Hence, given independent samples x1, x2, . . . , x2m, the
probability of (7) occurring for a single f ∈ F can be

bounded using Hoeffding’s inequality by

2 exp

(
− 2mε2

1
m

∑m
i=1 max (s(xi), s(xi+m))

2

)

≤ 2 exp

(
− mε2

1
2m

∑2m
i=1 s(xi)

2

)
.

By (5), with probability at least 1 − δ
4 , we have

1
2m

∑2m
i=1 s(xi)

2 ≤ t and we hence requirem ∈ Ω
(
t log 1

δ

ε2

)
samples to guarantee that (7) does not hold for a single
f ∈ F with probability at least 1− δ

2 .

To bound the probability that there exists any f ∈ F such
that (7) holds, we show in Lemma 5 (see Section B of the
Supplementary Materials) that, given independent samples
x1, x2, . . . , x2m,

P

[
∃f ∈ F :

∣∣∣∣∣ 1m
m∑
i=1

σi(f(xi)− f(xi+m))

∣∣∣∣∣ > ε

]

≤ 4
(
16e2

)Pdim(F)
e
− ε2m

200 1
2m

∑2m
i=1

s(xi)
2
.

The key difficulty in proving Lemma 5 is that the functions
f ∈ F are not bounded uniformly in [0, 1]. To this end,
we provide in Lemma 4 a novel result that bounds the size
of ε-packings of F if the functions f ∈ F are bounded in
expectation. Based on Lemma 5, we then prove the main
claim of Theorem 5.

6. Analysis for k-Means
In order to apply Theorem 5 to k-Means clustering, we re-
quire a suitable family F , an upper bound s(x) and a bound
on EP

[
s(x)

2
]
. We provide this in Lemma 1 and defer

bounding 1
2m

∑2m
i=1 s(xi)

2 to the proofs of Theorems 2-4.

Lemma 1 (k-Means). Let k ∈ N. Let P be any distribution
on Rd with µ = EP [x], σ2 = EP

[
d(x, µ)2

]
∈ (0,∞) and

bounded kurtosis M̂4. For any x ∈ Rd and any Q ∈ Rd×k,
define

fQ(x) =
d(x,Q)2

1
2σ

2 + 1
2EP [d(x,Q)2]

(8)

as well as the function family F =
{
fQ(·) | Q ∈ Rd×k

}
.

Let

s(x) =
4 d(x, µ)2

σ2
+ 8.

We then have

Pdim(F) ≤ 6k(d+ 4) log 6k, (9)

fQ(x) ≤ s(x) (10)
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for any x ∈ Rd and Q ∈ Rd×k and

EP
[
s(x)

2
]

= 128 + 16M̂4. (11)

The proof of Lemma 1 is provided in Section C of the
Supplementary Materials. The definition of fQ(x) in (8) is
motivated as follows: If we use Theorem 5 to guarantee∣∣∣∣∣

m∑
i=1

f(xi)− EP [f(x)]

∣∣∣∣∣ ≤ ε ∀f ∈ F . (12)

then this implies∣∣φX (Q)− EP
[
d(x,Q)2

]∣∣ ≤ ε

2
σ2 +

ε

2
EP
[
d(x,Q)2

]
(13)

as is required by Theorems 2-4. Lemma 1 further shows
that E [s(x)]

2 is bounded if and only if the kurtosis of P is
bounded. This is the reason why a bounded kurtosis is the
weakest assumption on P that we require in Section 4.

We now proceed to prove Theorems 2-4 by applying Theo-
rem 5 and examining the tail behavior of 1

2m

∑2m
i=1 s(xi)

2.

6.1. Proof of Theorem 1 (kurtosis bound)

The bound based on the kurtosis follows easily from
Markov’s inequality.

Proof. We consider the choice t = 4
(

128 + 16M̂4

)
/δ.

By Markov’s inequality and linearity of expectation, we
then have by Lemma 1 that

P

[
1

2m

2m∑
i=1

s(xi)
2 > t

]
≤

E
[
s(x)2

]
t

=
δ

4
.

Furthermore, EP
[
s(x)

2
]
≤ t. Hence, we may apply Theo-

rem 5 to obtain that for

m ≥
12800

(
8 + M̂4

)
ε2δ

(
3 + 30k(d+ 4) log 6k + log

1

δ

)
,

it holds with probability at least 1− δ that∣∣∣∣∣ 1

m

m∑
i=1

f(xi)− E [f(x)]

∣∣∣∣∣ ≤ ε ∀f ∈ F .
This implies the main claim and thus concludes the proof.

6.2. Proof of Theorem 2 (higher order moment bound)

We prove the result by bounding the higher moments
of 1

2m

∑2m
i=1 s(xi)

2 using the Marcinkiewicz-Zygmund in-
equality and subsequently applying Markov’s inequality.

Proof. Hoelder’s inequality implies

M̂4 =
EP
[
d(x, µ)4

]
σ4

≤ EP [d(x, µ)p]
4
p

σ4
≤ M̂p

4
p

Hence, by Lemma 1 we have that EP
[
s(x)2

]
≤ 128 +

16M̂p

4
p Since s(x)2 ≥ 0 for all x ∈ Rd, we have∣∣s(x)2 − EP

[
s(x)2

]∣∣ ≤ max
(
s(x)2,EP

[
s(x)2

])
≤ max

(
s(x)2, 128 + 16M̂p

4
p

)
≤ 128

+ 16 max

(
M̂p

4
p , 2

d(x, µ)4

σ4

)
.

(14)

This implies that

(15)

EP
[∣∣s(x)2 − EP

[
s(x)2

]∣∣ p4 ]
≤ 256

p
4 + 32

p
4 max

(
M̂p, 2

p
4
EP [d(x, µ)p]

σp

)
≤ 256

p
4 + 32

p
4 max

(
M̂p, 2

p
4 M̂p

)
≤ 256

p
4 + 64

p
4 M̂p.

We apply a variant of the Marcinkiewicz-Zygmund inequal-
ity (Ren & Liang, 2001) to the zero-mean random variable
s(x)2 − EP

[
s(x)2

]
to obtain

(16)

EP

∣∣∣∣∣ 1

2m

2m∑
i=1

(
s(xi)

2 − EP
[
s(x)2

])∣∣∣∣∣
p
4


≤
(
p− 4

4
√

2m

) p
4

EP
[∣∣s(x)2 − EP

[
s(x)2

]∣∣ p4 ]
≤
(
p− 4

4
√

2m

) p
4 (

256
p
4 + 64

p
4 M̂p

)
For u > 0, the Markov inequality implies

(17)

P

[∣∣∣∣∣ 1

2m

2m∑
i=1

(
s(xi)

2 − EP
[
s(x)2

])∣∣∣∣∣ > u

]

≤
(

p− 4

4u
√

2m

) p
4 (

256
p
4 + 64

p
4 M̂p

)
≤
(

p− 4

4u
√

2m

) p
4

2 max
(

256
p
4 , 64

p
4 M̂p

)
≤ 2

(
p− 4

4u
√

2m
max

(
256, 64M̂p

4
p

)) p
4

≤ 2

(
p− 4

u
√

2m

(
64 + 16M̂p

4
p

)) p
4

.
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For u = (p− 4)

(
64 + 16M̂p

4
p

)
, we thus have

P

[∣∣∣∣∣ 1

2m

2m∑
i=1

(
s(xi)

2 − EP
[
s(x)2

])∣∣∣∣∣ > u

]
≤ 2m−

p
8

(18)

Since m ≥
(

8
δ

) 8
p , this implies

(19)P

[∣∣∣∣∣ 1

2m

2m∑
i=1

(
s(xi)

2 − EP
[
s(x)2

])∣∣∣∣∣ > u

]
≤ δ

4

It holds that

u+EP
[
s(x)2

]
= (p−4)

(
64+16M̂p

4
p

)
+128+16M̂p

4
p

≤ p
(

64 + 16M̂p

4
p

)
(20)

We set t = p

(
64 + 16M̂p

4
p

)
and thus have

(21)P

[
1

2m

2m∑
i=1

s(xi)
2 > t

]
≤ δ

4

In combination with EP
[
s(x)

2
]
≤ t by Lemma 1, we may

thus apply Theorem 5. Since m ≥ 3200m1

ε2 with

m1 = p

(
4 + M̂p

4
p

)(
3 + 30k(d+ 4) log 6k + log

1

δ

)
it holds with probability at least 1− δ that∣∣∣∣∣ 1

m

m∑
i=1

f(xi)− E [f(x)]

∣∣∣∣∣ ≤ ε ∀f ∈ F .
This implies the main claim and thus concludes the proof.

6.3. Proof of Theorem 3 (subgaussianity)

Under subgaussianity, all moments of d(x, µ) are bounded.
We show the result by optimizing over p in Theorem 2.

Proof. For p ∈ {4, 8, . . . ,∞}, we have

(22)

M̂p = EP
[∣∣∣∣d(x, µ)

σ

∣∣∣∣p]
=

∫ ∞
0

P
[

d(x, µ)

σ
> u

1
p

]
du

≤
∫ ∞

0

a exp

(
−u

2
p

√
b

)
du.

Let u(t) = b
p
4 t

p
2 which implies du/dt = b

p
4
p
2 t

p
2−1. Hence,

M̂p ≤
ab

p
4 p

2

∫ ∞
0

e−tt
p
2−1dt.

By the definition of the gamma function and since p is even,
we have∫ ∞

0

e−tt
p
2−1dt = Γ

(p
2

)
=
(p

2
− 1
)

!≤
(p

2

) p
2−1

Hence, for p ∈ {4, 8, . . . ,∞}, we have

M̂p

4
p ≤ 1

4
a

4
p bp2 ≤ 1

4
abp2.

Let p∗ = 4
⌈

5
4 + 3

4 log 1
δ

⌉
which implies

p∗ ≥ 5 + 3 log
1

δ
≥ 8

log 48
log

8

δ

and thus
(

8
δ

) 8
p∗ ≤ 48. We instantiate Theorem 2 with

the p∗th-order bound M̂p∗ of P . Since
(

8
δ

) 8
p∗ ≤ 48, the

minimum sample size is thus

3200p∗
ε2

(
4 +

abp∗
2

4

)(
3 + 30k(d+ 4) log 6k + log

1

δ

)
.

The main claim finally holds since p∗ ≤ p = 9 + 3 log 1
δ .

6.4. Proof of Theorem 4 (bounded support)

Proof. Let t = 128 + 64R4/σ4. Since the support of P is
bounded, we have s(x) ≤ t for all x ∈ Rd. This implies
that EP

[
s(x)

2
]
≤ t and that 1

2m

∑2m
i=1 s(xi)

2 ≤ t almost
surely. The result then follows from Theorem 5.

7. Conclusion
We have presented a framework to uniformly approximate
the expected value of unbounded functions on a sample.
With this framework we are able to provide theoretical guar-
antees for empirical risk minimization in k-Means clustering
if the kurtosis of the underlying distribution is bounded. In
particular, we obtain state-of-the art bounds on the sufficient
number of samples to achieve a given uniform approxima-
tion error. If the underlying distribution fulfills stronger
assumptions, such as bounded higher moments, subgaus-
sianity or bounded support, our analysis yields progressively
better bounds. We conjecture that Theorem 5 can be applied
to other related problems such as hard and soft Bregman
clustering, likelihood estimation of Gaussian mixture mod-
els, as well as nonparametric clustering problems. However,
such results do not follow immediately and require addi-
tional arguments beyond the scope of this paper.
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A. Auxiliary lemmas
For the following proofs we require two auxiliary lemmas.

Lemma 2. Let x > 0 and a > 0. If

x ≤ a log x (23)

then it holds that

x ≤ 2a log 2a. (24)

Proof. Since x > 0, we have
√
x > 0 and thus log

√
x ≤√

x. Together with (23), this implies

x ≤ a log x = 2a log
√
x ≤ 2a

√
x,

and thus
x ≤ 4a2.

We show the result by contradiction. Suppose that

x > 2a log 2a.

Together with (23), this implies

2a log 2a < a log x

which in turn leads to the contradiction

x > 4a2.

This concludes the proof since (24) must hold.

Lemma 3. For n ∈ N, define

Sn =

n∑
j=1

√
j

2j

Then,
lim
n→∞

Sn ≤ 5.

Proof. Subtracting√
1

2
Sn =

n∑
j=1

√
j

2j+1
=

n∑
j=2

√
j − 1

2j

from Sn yields

(
1−

√
1

2

)
Sn =

n∑
j=1

√
j −
√
j − 1

2j/2

=

√
1

2
+

n∑
j=2

√
j −
√
j − 1

2j/2
.

For j ≥ 2, we have
√
j −
√
j − 1 ≤

√
2− 1 and hence

(
1−

√
1

2

)
Sn ≤

√
1

2
+
(√

2− 1
) n∑
j=2

√
1

2

j

=

√
1

2
+

√
2− 1

2

n∑
j=2

√
1

2

j−2

=

√
1

2
+

√
2− 1

2

n∑
j=0

√
1

2

j

︸ ︷︷ ︸
(∗)

.

The term (∗) is a geometric series and hence

limn→∞
∑n
j=0

√
1
2

j

=
(

1−
√

1
2

)−1

. This implies

lim
n→∞

Sn ≤

√1

2
+

√
2− 1

2
(

1−
√

1
2

)
(1−

√
1

2

)−1

=
1

√
2
(

1−
√

1
2

) +

√
2
(

1−
√

1
2

)
2
(

1−
√

1
2

)2

=
2√

2− 1

=
2√

2− 1

√
2 + 1√
2 + 1

= 2 + 2
√

2

≤ 5

as desired.

B. Proof of Theorem 5
We first show two results, Lemma 4 and 5 and then use them
to prove Theorem 5.

Definition 2. Let F be a family of functions from X to R≥0

and Q an arbitrary measure on X . For any f, g ∈ F , we
define the distance function

dL1(Q)(f, g) =

∫
X
|f(x)− g(x)| dQ(x).

For any f ∈ F and A ⊆ F , we further define

dL1(Q)(f,A) = min
g∈A

dL1(Q)(f, g).

Definition 3. For ε > 0, a set A ⊆ B is an ε-packing of B
with respect to some metric d if for any two distinct x, y ∈ A,
d(x, y) > ε. The cardinality of the largest ε-packing of B
with respect to d is denoted byM (ε, B,d).
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Lemma 4 (ε-packing). Let F be a family of functions from
X to R≥0 with Pdim(F ) = d. For all x ∈ X , let s(x) =
supf∈F f(x). Let Q be an arbitrary measure on X with
0 < EQ [s(x)] <∞. Then, for all 0 < ε ≤ EQ [s(x)],

M
(
ε,F ,dL1(Q)

)
≤ 8

(
2eEQ [s(x)]

ε

)2d

.

Proof. Our proof is similar to the proof of Theorem 6
in Haussler (1992). The difference is that we consider a
function family F that is not uniformly bounded but only
bounded in expectation. The key idea is to construct a ran-
dom sample and to use the expected number of dichotomies
on that set to bound the size of an ε-packing by the pseudo-
dimension.

Noting that by definition s(x) ≥ 0 and EQ [s(x)] <∞, we
define the probability measure Q̃ on X using the Radon-
Nikodym derivative

dQ̃(x)

dQ(x)
=

s(x)

EQ [s(x)]
, ∀x ∈ X .

Let ~x = (x1, x2, . . . , xm) be a random vector inXm, where
each xi is drawn independently at random from Q̃. Given
~x, let ~r = (r1, r2, . . . , rm) be a random vector, where each
ri is drawn independently at random from a uniform distri-
bution on [0, s(xi)].

For any f ∈ F , we denote the restriction
(f(x1), . . . , f(xm)) by f~x and set F~x = {f~x | f ∈ F}.
For any vector ~z ∈ Rm, we define

sign(~z) = (sign(z1), . . . , sign(zm)) .

The set of dichotomies induced by ~r on F~x is given by

sign(F~x − ~r) = {sign(f~x − ~r) | f ∈ F} .

For m ≥ d, Sauer’s Lemma (Sauer, 1972; Vapnik & Cher-
vonenkis, 1971) bounds the size of this set by

|sign(F~x − ~r)| ≤ (em/d)
d
,

for all ~x ∈ Xm and ~r ∈ Rm. Hence, the expected number
of dichotomies is also bounded, i.e.

E [|sign(F~x − ~r)|] ≤ (em/d)
d
. (25)

Let G be a ε-separated subset of F with respect to dL1(Q)

with |G|= M
(
ε,F ,dL1(Q)

)
. By definition, for any two

distinct f, g ∈ G, we have∫
X
|f(x)− g(x)| dQ(x) > ε.

Consider the set X0 = {x ∈ X : s(x) = 0} and define
X>0 = X \ X0. By definition of Q̃, X0 is zero set of
Q̃ and, since f(x), g(x) ∈ [0, s(x)] for all x ∈ X , we have∫
X0
|f(x)− g(x)| dQ(x) = 0.

For any two distinct f, g ∈ G, we thus have for all i =
1, . . . ,m

P [sign(f(xi)− ri) 6= sign(g(xi)− ri)]

=

∫
X

∫ |f(xi)−g(xi)|

0

1

s(x)
drdQ̃(x)

=

∫
X>0

∫ |f(xi)−g(xi)|

0

1

s(x)
drdQ̃(x)

=

∫
X>0

|f(xi)− g(xi)|
s(x)

dQ̃(x)

=

∫
X>0

|f(xi)− g(xi)|
EQ [s(x)]

dQ(x)

=

∫
X

|f(xi)− g(xi)|
EQ [s(x)]

dQ(x)

>
ε

EQ [s(x)]

This allows us to bound the probability that two distinct
f, g ∈ G produce the same dichotomy on all m samples, i.e.

P [sign(f~x − ~r) = sign(g~x − ~r)]

=

m∏
i=1

(1− P [ sign(f(xi)− ri) 6= sign(g(xi)− ri) ])

≤
(

1− ε

EQ [s(x)]

)m
≤ exp

(
− εm

EQ [s(x)]

)
.

Given ~x ∈ Xm and ~r ∈ Rm, letH be the subset of G with
unique dichotomies, i.e.,H ⊆ G such that for any f ∈ H,

sign(f~x − ~r) 6= sign(g~x − ~r),

for all g ∈ G \ {f}. We then have

P [f /∈ H]

= P [∃g ∈ G \ {f} : sign(f~x − ~r) = sign(g~x − ~r) ]

≤ |G| max
g∈G\{f}

P [ sign(f~x − ~r) = sign(g~x − ~r) ]

≤ |G|· exp

(
− εm

EQ [s(x)]

)
.

This allows us to bound the expected number of dichotomies
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from below, i.e.,

E [|sign(F~x − ~r)|] ≥ E [|sign(G~x − ~r)|]
≥ E [|sign(H~x − ~r)|]
≥ E [|H|]
=
∑
f∈G

(1− P [f /∈ H ])

≥ |G|
[
1− |G|· exp

(
− εm

EQ [s(x)]

)]
.

Together with (25), we thus have for m ≥ d(em
d

)d
≥ |G|

[
1− |G|· exp

(
− εm

EQ [s(x)]

)]
. (26)

Consider the case

EQ [s(x)]

ε
ln(2|G|) < d.

Since ε ≤ EQ [s(x)] and |G|=M
(
ε,F ,dL1(Q)

)
, we then

have

M
(
ε,F ,dL1(Q)

)
= |G|≤ 1

2
edε/EQ[s(x)] ≤ 1

2
ed

as required to show the result. We hence assume
EQ [s(x)] ln(2|G|)/ε ≥ d for the remainder of the proof.

Let m ≥ EQ [s(x)] ln(2|G|)/ε which implies

1− |G|· exp

(
− εm

EQ [s(x)]

)
≥ 1

2
.

Together with (26) and m ≥ d, it follows that

|G|≤ 2

(
eEQ [s(x)]

εd
ln(2|G|)

)d
and hence

√
|G|

2ddd
√

2|G|
(ln 2|G|)d

≤ 2
√

2

(
2eEQ [s(x)]

ε

)d
. (27)

Since lnx ≤ x, we have for x = (2|G|)1/2d that

ln(2|G|)1/2d ≤ (2|G|)1/2d

which implies

ln(2|G|) ≤ 2d(2|G|)1/2d

and hence

1 ≤
2ddd

√
2|G|

(ln 2|G|)d
.

Together with (27) and |G|=M
(
ε,F ,dL1(Q)

)
, we have

M
(
ε,F ,dL1(Q)

)
= |G|≤ 8

(
2eEQ [s(x)]

ε

)2d

as required which concludes the proof.

Lemma 5 (Chaining). Let F be a family of functions from
X to R≥0 with Pdim(F ) = d < ∞. For all x ∈ X ,
let s(x) = supf∈F f(x). For m ≥ 200K(2d + 1)/ε2, let
x1, . . . , x2m be a subset ofX withK = 1

2m

∑2m
i=1 s(xi)

2 <
∞. For i = 1, 2, . . . ,m, let σi be drawn from {−1, 1}
uniformly at random. Then, for all 0 < ε ≤ 1,

P

[
∃f ∈ F :

∣∣∣∣∣ 1m
m∑
i=1

σi(f(xi)− f(xi+m))

∣∣∣∣∣ > ε

]

≤ 4
(
16e2

)d
e−

ε2m
200K

Proof. Consider the case 1
2m

∑2m
i=1 s(xi) ≤ 0. By defi-

nition, we have s(xi) ≥ f(xi) ≥ 0 for all f ∈ F and
i = 1, . . . , 2m. Thus, f(xi) = 0 for all i = 1, . . . , 2m.
The claim then follows directly since

m∑
i=1

σi(f(xi)− f(xi+m) = 0

for all f ∈ F . For the remainder of the proof, we hence
only need to consider the case 1

2m

∑2m
i=1 s(xi) > 0.

We define the discrete measure Q by placing an atom at
each xi with weight proportional to s(xi). More formally,

PX∼Q [X = x] =

2m∑
i=1

s(xi)∑2m
k=1 s(xk)

1{xi=x}, ∀x ∈ X .

Since
∑2m
i=1 s(xi)

2 <∞ and
∑2m
i=1 s(xi) > 0, we have

EQ [s(x)] =

∑2m
i=1 s(xi)

2∑2m
k=1 s(xk)

<∞. (28)

For j ∈ N, let γj = EQ [s(x)] /2j . We define a sequence
G1,G2, . . . ,G∞ of γj-packings of F as follows: Let the set
G0 consist of an arbitrary element f ∈ F . For any j ∈ N,
we initialize Gj to Gj−1. Then, we select a single element
f ∈ F with dL1(Q)(f,Gj) > γj and add it to Gj . We repeat
this until no such element f ∈ F with dL1(Q)(f,Gj) > γj
is left. By definition, Gj is an γj-packing of F with respect
to dL1(Q). Hence, for any f ∈ F , we have

dL1(Q)(f,Gj) ≤ γj = EQ [s(x)] /2j . (29)
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By Lemma 4, the size of Gj is bounded by

|Gj |≤ 2(2e2j)2d = 22d(j+1)+1e2d. (30)

For each f ∈ F and j ∈ N, we define the closest element
in Gj by

φj(f) = arg min
g∈Gj

dL1(Q)(f, g).

By (30), Gj is finite for each j ∈ N and the minimum is
well-defined.

We construct the following sequenceH1,H2, . . . ,H∞: Let
H1 be equal to G1. For each j ∈ {2, 3, . . . ,∞}, we define

Hj = {g − φj−1(g) : g ∈ Gj} .

For all j ∈ N and h ∈ Hj , there is hence a gh ∈ Gj such
that h = gh(x) − φj−1(gh). By (29), we thus have for all
j ∈ N and h ∈ Hj

(31)EQ [|h(x)|] = dL1(Q)(gh,Gj−1) ≤ γj−1.

Furthermore, by (30), we have for all j ∈ N

(32)|Hj |≤ |Gj |≤ 22d(j+1)+1e2d.

The key idea is that intuitively any f ∈ F can be ad-
ditively decomposed into functions from the sequence
H1,H2, . . . ,H∞. By definition, for any j ∈ N, any func-
tion g ∈ Gj can be rewritten as

g =

j∑
k=1

hg,k

where (hg,1, hg,2, . . . , hg,j) are functions in H1 × H2 ×
. . .×Hj . Let j →∞ and define

G =

∞⋃
j=1

Gj .

Clearly, G is dense in F with respect to dL1(Q). We claim
that, as a consequence,

∃f ∈ F :

∣∣∣∣∣ 1

m

m∑
i=1

σi(f(xi)− f(xi+m))

∣∣∣∣∣ > ε (33)

if and only if

∃g ∈ G :

∣∣∣∣∣ 1

m

m∑
i=1

σi(g(xi)− g(xi+m))

∣∣∣∣∣ > ε. (34)

Since G ⊆ F , we have (34) =⇒ (33). To show the
converse, assume ∃f ∈ F such that∣∣∣∣∣ 1

m

m∑
i=1

σi(f(xi)− f(xi+m))

∣∣∣∣∣ = ε+ κ,

for some κ > 0. By (29) and j sufficiently large, there
exists a g ∈ G such that

dL1(Q)(f, g) <
4

1
2m

∑2m
k=1 s(xk)

κ2. (35)

Using the triangle inequality, we have

ε+ κ =

∣∣∣∣∣ 1

m

m∑
i=1

σi(f(xi)− f(xi+m))

∣∣∣∣∣
≤

∣∣∣∣∣ 1

m

m∑
i=1

σi(g(xi)− g(xi+m))

∣∣∣∣∣
+

1

m

2m∑
i=1

|f(xi)− g(xi)| .

Using the Cauchy-Schwarz inequality, the fact that
f(x), g(x) ∈ [0, s(x)] for all x ∈ X , as well as the def-
inition of dL1(Q) and (35), we may bound

1

m

2m∑
i =1

|f(xi)− g(xi)|

≤

√√√√ 1

m2

2m∑
i=1

|f(xi)− g(xi)|2

≤

√√√√ 1

m2

2m∑
i=1

|f(xi)− g(xi)| s(xi)

=

√√√√∑2m
k=1 s(xk)

m2

2m∑
i=1

|f(xi)− g(xi)|
s(xi)∑2m
k=1 s(xk)

=

√
4

∑2m
k=1 s(xk)

2m
dL1(Q)(f, g)

< κ.

Together with (B), we hence have

∣∣∣∣∣ 1

m

m∑
i=1

σi(g(xi)− g(xi+m))

∣∣∣∣∣ > ε.

which implies (33) =⇒ (34) as claimed.

As a consequence, it is sufficient to only consider G instead
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of F . More formally,

P

[
∃f ∈ F :

∣∣∣∣∣ 1m
m∑
i=1

σi(f(xi)− f(xi+m))

∣∣∣∣∣ > ε

]

= P

[
∃g ∈ G :

∣∣∣∣∣ 1m
m∑
i=1

σi(g(xi)− g(xi+m))

∣∣∣∣∣ > ε

]

≤ P

[
∃g ∈ G :

∣∣∣∣∣ 1m
m∑
i=1

∞∑
j=1

σi(hg,j(xi)− hg,j(xi+m))

∣∣∣∣∣ > ε

]

≤ P

[
∃g ∈ G :

∞∑
j=1

∣∣∣∣∣ 1m
m∑
i=1

σi(hg,j(xi)− hg,j(xi+m))

∣∣∣∣∣ > ε

]

For i ∈ N, let εj = ε
5

√
j
2j . In Lemma 3, we show that∑∞

j=1 εj ≤ ε. Suppose it holds that∣∣∣∣∣ 1

m

m∑
i=1

σi(hg,j(xi)− hg,j(xi+m))

∣∣∣∣∣ ≤ εj
for all g ∈ G and j ∈ N. Then, we have that

∞∑
j=1

∣∣∣∣∣ 1

m

m∑
i=1

σi(hg,j(xi)− hg,j(xi+m))

∣∣∣∣∣ ≤
∞∑
j=1

εj ≤ ε

for all g ∈ G. Hence, using the union bound, we have

P

[
∃f ∈ F :

∣∣∣∣∣ 1m
m∑
i=1

σi(f(xi)− f(xi+m))

∣∣∣∣∣ > ε

]

≤
∞∑
j=1

P

[
∃g ∈ G :

∣∣∣∣∣ 1m
m∑
i=1

σi(hg,j(xi)− hg,j(xi+m))

∣∣∣∣∣ > εj

]

=

∞∑
j=1

P

[
∃h ∈ Hj :

∣∣∣∣∣ 1m
m∑
i=1

σi(h(xi)− h(xi+m))

∣∣∣∣∣ > εj

]

≤
∞∑
j=1

|Hj |max
h∈Hj

P

[∣∣∣∣∣ 1m
m∑
i=1

σi(h(xi)− h(xi+m))

∣∣∣∣∣ > εj

]
(36)

We now use Hoeffding’s inequality to bound the probability
that ∣∣∣∣∣ 1

m

m∑
i=1

σi(h(xi)− h(xi+m))

∣∣∣∣∣ > εj ,

for a single j ∈ N and h ∈ Hj .

For i ∈ {1, 2, . . . ,m}, consider the random variables

Xi = σi(h(xi)− h(xi+m)).

Since σi are uniformly drawn at random from {−1, 1}, we
have E [Xi] = 0 for all i ∈ {1, 2, . . . ,m}. Furthermore,
each Xi is bounded in

[ai, bi] = [0± (h(xi)− h(xi+m))]. (37)

Since all Xi are independent, we may apply Hoeffding’s
inequality. By Theorem 2 of Hoeffding (1963), we have

P

[∣∣∣∣∣ 1

m

m∑
i=1

Xi − E [Xi]

∣∣∣∣∣ > εj

]
≤ e
−

2ε2jm

1
m

∑m
i=1

(ai−bi)2

Using (37), we have

(ai−bi)2 = 4(h(xi)−h(xi+m))2 ≤ 4h(xi)
2+4h(xi+m)2

which implies that

1

m

m∑
i=1

(ai − bi)2 ≤ 8
1

2m

2m∑
i=1

h(xi)
2.

Using h(xi) ∈ [0, s(xi)] and the definition of EQ [·], we
have

1

m

m∑
i =1

(ai − bi)2 ≤ 8
1

2m

2m∑
i=1

|h(xi)|s(xi)

= 8

(
1

2m

2m∑
i=1

s(xi)

)
EQ [|h(x)|]

By (31) and (28), we thus have

1

m

m∑
i =1

(ai − bi)2 ≤ 8

(
1

2m

2m∑
i=1

s(xi)

)
γj−1

= 24−j

(
1

2m

2m∑
i=1

s(xi)

)
EQ [s(x)]

= 24−j

(
1

2m

2m∑
i=1

s(xi)

) ∑2m
i=1 s(xi)

2∑2m
k=1 s(xk)

= 24−j

(
1

2m

2m∑
i=1

s(xi)
2

)
= 24−jK

Since εi = ε
5

√
j
2j this implies

−
2ε2jm

1
m

∑m
i=1(ai − bi)2

≤ − ε
2mj

200K

Hence, for any j ∈ N and any h ∈ Hj

P

[∣∣∣∣∣ 1

m

m∑
i=1

σi(h(xi)− h(xi+m))

∣∣∣∣∣ > εj

]
≤ e−

ε2mj
200K .
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Together with (32), this allows us to bound (36), i.e.,

P

[
∃f ∈ F :

∣∣∣∣∣ 1

m

m∑
i=1

σi(f(xi)− f(xi+m))

∣∣∣∣∣ > ε

]

≤
∞∑
j=1

|Hj |e−
ε2mj
200K

≤
∞∑
j=1

22d(j−1)+4d+1e2de−
ε2mj
200K

= 24d+1e2de−
ε2m
200K

∞∑
j=1

(
4de−

ε2m
200K

)j−1

= 24d+1e2de−
ε2m
200K

∞∑
j=0

(
4de−

ε2m
200K

)j
.

By assumption in the main claim, we have m ≥ 200K(2d+
1)/ε2 and hence

0 ≤ 4de−
ε2m
200K ≤ 1

2
.

This implies

∞∑
j=0

(
4de−

ε2m
100K

)j
≤
∞∑
j=0

1

2j
= 2

and hence

P

[
∃f ∈ F :

∣∣∣∣∣ 1

m

m∑
i=1

σi(f(xi)− f(xi+m))

∣∣∣∣∣ > ε

]
≤ 4

(
16e2

)d
e−

ε2m
200K

which concludes the proof.

With these results we are able to prove Theorem 5.

Proof of Theorem 5. Our goal is to upper bound the proba-
bility of the event

A =

{
∃f ∈ F :

∣∣∣∣∣ 1

m

m∑
i=1

f(xi)− E [f(x)]

∣∣∣∣∣ > ε

}

by δ, i.e., to prove P [A] ≤ δ. Consider the event

B =

{
∃f ∈ F :

∣∣∣∣∣ 1

m

m∑
i=1

f(xi)− E [f(x)]

∣∣∣∣∣ > ε

∩

∣∣∣∣∣ 1

m

2m∑
i=m+1

f(xi)− E [f(x)]

∣∣∣∣∣ ≤ ε/2
}
.

and assume that the eventA holds, i.e., there exists a f ′ ∈ F
such that ∣∣∣∣∣ 1

m

m∑
i=1

f ′(xi)− E [f ′(x)]

∣∣∣∣∣ > ε.

For any f ∈ F , Markov’s inequality in combination with
Jensen’s inequality implies

P

[∣∣∣∣∣ 1

m

2m∑
i=m+1

f(xi)− E [f(x)]

∣∣∣∣∣ > ε

2

]

≤
4 · E

[∣∣∣ 1
m

∑2m
i=m+1 f(xi)− E [f(x)]

∣∣∣2 ]
ε2

≤
4 · E

[∣∣∣ 1
m

∑2m
i=m+1 f(xi)

∣∣∣2 ]
ε2

≤
4 · E

[
1
m

∑2m
i=m+1 |f(xi)|2

]
mε2

=
4 · E

[
s(x)2

]
mε2

.

Together with

m ≥ 200t

ε2

(
3 + 5d+ log

1

δ

)
≥ 8t

ε2

this implies that

P

[∣∣∣∣∣ 1

m

2m∑
i=m+1

f ′(xi)− E [f ′(x)]

∣∣∣∣∣ ≤ ε/2
]
≥ 1

2

since EP
[
s(x)2

]
≤ t by (5). Thus, given A, the event B

holds with probability at least 1/2, i.e.,

P [B | A] ≤ 1/2.

Since

P [B] = P [A ∩B] = P [B | A]P [A] ,

we thus have

P [A] ≤ 2 · P [B] . (38)

We consider the event

C =

{
∃f ∈ F :

∣∣∣∣∣ 1

m

m∑
i=1

(f(xi)− f(xi+m))

∣∣∣∣∣ > ε/2

}
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and note that, if B holds, then there exists a f ′ ∈ F such
that

ε <

∣∣∣∣∣ 1

m

m∑
i=1

f ′(xi)− E [f ′(x)]

∣∣∣∣∣
≤

∣∣∣∣∣ 1

m

m∑
i=1

f ′(xi)−
1

m

2m∑
i=m+1

f ′(xi)

∣∣∣∣∣
+

∣∣∣∣∣ 1

m

2m∑
i=m+1

f ′(xi)− E [f ′(x)]

∣∣∣∣∣︸ ︷︷ ︸
≤ ε2

which implies that there exists a f ′ ∈ F with∣∣∣∣∣ 1

m

m∑
i=1

(f ′(xi)− f ′(xi+m))

∣∣∣∣∣ > ε/2 .

Hence, B ⊆ C which in combination with (38) implies that

P [A] ≤ 2 · P [B] ≤ 2 · P [C] . (39)

Let ~σ = (σ1, σ2, . . . , σm) be a random vector where each
σi is sampled independently at random from a uniform
distribution on {−1, 1}. We define the event

D =

{
f ∈ F :

∣∣∣∣∣ 1

m

m∑
i=1

σi (f(xi)− f(xi+m))

∣∣∣∣∣ > ε/2

}
.

In essence, σi randomly permutes xi and xm+i for any
i ∈ {1, . . . ,m}. Hence, since all xi are identically and
independently distributed and hence exchangeable, we have

P [C] = P [D] . (40)

Consider the event

E =

{
1

2m

2m∑
i=1

s(xi)
2 ≤ t

}
and let E denote its complement. By (5), we have that

P
[
E
]
≤ δ

4
.

Let E~x [·] denote the expectation with regards to the random
vector ~x = (x1, x2, . . . , x2m) and P~σ [·] the probability with
regards to the random vector ~σ. By construction, ~σ and ~x
are independent and the event E only depends on ~x but not
on ~σ. We thus have

P [D] = P
[
D ∩ E

]
+ P [D ∩ E]

≤ P
[
E
]

+ E~x [P~σ [D ∩ E]]

≤ δ

4
+ E~x [P~σ [D]1E ]

=
δ

4
+ E~x [P~σ [D|E]1E ] .

Consider any fixed vector ~x = (x1, x2, . . . , x2m): If
E does not hold, then P~σ [D|E]1E = 0. Otherwise,

1
2m

∑2m
i=1 s(xi)

2 ≤ t and consequently Lemma 5 with
K = t implies that for m ≥ 200t(2d+ 1)/ε2

P~σ [D|E] ≤ 4
(
16e2

)d
e−

ε2m
200t .

As a result, we have for m ≥ 200t(2d+ 1)/ε2

P [D] ≤ δ

4
+ E~x

[
4
(
16e2

)d
e−

ε2m
200t 1E

]
≤ δ

4
+ 4

(
16e2

)d
e−

ε2m
200t .

In combination with (39) and (40), this implies that for
m ≥ 200t(2d+ 1)/ε2

P [A] ≤ δ

2
+ 8

(
16e2

)d
e−

ε2m
200t .

By the main claim, we always have m ≥ 200t(2d+ 1)/ε2

and hence we only need to show that

P [A] ≤ δ

2
+ 8

(
16e2

)d
e−

ε2m
200t ≤ δ.

This is equivalent to

8
(
16e2

)d
e−

ε2m
200t ≤ δ/2

and

log 16 + d(log 16 + 2)− ε2m

200t
≤ ln δ.

This is the case if we have

log 16 + d(log 16 + 2) + log
1

δ
≤ ε2m

200t

or equivalently

m ≥ 200t

ε2

(
log 16 + d(log 16 + 2) + log

1

δ

)
.

The main claim thus holds since

m ≥ 200t

ε2

(
3 + 5d+ log

1

δ

)
which concludes the proof.
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C. Proof of Lemma 1
Proof. We first show (9) with the same notation as in the
proof of Lemma 4. For any f ∈ F , ~x ∈ Xm and ~r ∈ Rm,
we denote the restriction (f(x1), . . . , f(xm)) by f~x and set
F~x = {f~x | f ∈ F}. For any vector ~z ∈ Rm, we define

sign(~z) = (sign(z1), . . . , sign(zm)) .

The set of dichotomies induced by ~r on F~x is given by

sign(F~x − ~r) = {sign(f~x − ~r) | f ∈ F} .

Let m̄ be equal to the pseudo-dimension of F . This implies
that there exist two vectors x̄ ∈ X m̄ and r̄ ∈ Rm̄ that are
shattered by F , i.e.,

|sign(Fx̄ − r̄)| = 2m̄. (41)

Consider any x ∈ ~x, its corresponding r ∈ ~r and any
fQ(·) ∈ F . Defining σ2

Q = EP
[
d(x,Q)2

]
, we have that

sign(fQ(x)− rx)

= sign

(
d(x,Q)2

1
2σ

2 + 1
2EP [d(x,Q)2]

− r
)

= sign
(

d(x,Q)2 − rx
2

(
σ2 + σ2

Q

))
= sign

(
min
q∈Q

d(x, q)2 − r

2

(
σ2 + σ2

Q

))
= sign

(
min
q∈Q

[
xTx− 2xT q + qT q

]
− r

2

(
σ2 + σ2

Q

))
= sign

(
min

q̃∈Q̃(Q)
〈x̃(x, r), q̃〉

)
,

(42)

where we have used the mappings

x̃(x, r) =


−2x
−r/2

1
xTx


and

Q̃(Q) =




q
σ2 + σ2

Q

qT q
1

 | q ∈ Q
 .

Consider the vector x̃ = (x̃(x̄1, r̄1), . . . , x̃(x̄m̄, r̄m̄)) and
the function family

G =

{
min

q̃∈Q̃(Q)
〈·, q̃〉 | Q ∈ Rd×k

}
.

By (42), both F and G induce the same dichotomies on
(x̄, r̄) and (x̃,~0) respectively and thus

|sign(Fx̄ − r̄)| = |sign(Gx̃)| . (43)

We define the function family

H =

{
min
q̃∈Q
〈·, q̃〉 | Q ∈ R(d+3)×k

}
and note that by construction G ⊆ H. This implies

|sign(Gx̃)| ≤ |sign(Hx̃)| . (44)

Consider the function family

I =
{
〈·, q̃〉 | q̃ ∈ Rd+3

}
.

For any Q ∈ R(d+3)×k, it holds that{
x ∈ x̃ | min

q̃∈Q
〈x, q̃〉 ≤ 0

}
=
⋃
q̃∈Q
{x ∈ x̃ | 〈x, q̃〉 ≤ 0} .

Since |Q|= k, this implies that there exists an injective
mapping from H to the k-fold Cartesian product of I that
generates the same dichotomies. In turn, this implies

|sign(Hx̃)| ≤ |sign(Ix̃)|k . (45)

The dichotomies induced by I are generated by halfspaces
in Rd+3. The Vapnik-Chervonenkis dimension of halfspaces
in Rd+3 is bounded by d + 4 (Har-Peled, 2011) and thus
Pdim(I) ≤ d + 4. Together with Sauer’s Lemma (Sauer,
1972; Vapnik & Chervonenkis, 1971), this implies

|sign(Ix̃)| ≤
(

em̄

d+ 4

)d+4

. (46)

Combining (41), (43), (44), (45) and (46) yields

2m̄ ≤
(

em̄

d+ 4

)(d+4)k

. (47)

For Pdim(F) = m̄ < d+ 4, the main claim holds trivially.
On the other hand, for m̄ ≥ d+ 4, (47) implies that

m̄

d+ 4
≤ k

log 2

(
1 + log

m̄

d+ 4

)
≤ 2k

log 2
log

m̄

d+ 4

Since m̄
d+4 > 0 and 2k

log 2 > 0, Lemma 2 implies that

m̄

d+ 4
≤ 4k

log 2
log

4k

log 2

Since 4
log 2 ≈ 5.77 < 6, this proves the claim in (9), i.e.,

Pdim(F) = m̄ ≤ 6k(d+ 4) log 6k.
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Next, we prove (10). For any x ∈ Rd and Q ∈ Rd×k, we
have by the triangle inequality

d(x,Q)2 ≤ (d(x, µ) + d(µ,Q))
2

= d(x, µ)2 + d(µ,Q)2 + 2 d(x, µ) d(µ,Q)

For any 0 ≤ a ≤ b, it holds that

2ab = ab+a(b−a) +a2 ≤ ab+ b(b−a) +a2 = b2 +a2.

Since either 0 ≤ d(x, µ) ≤ d(µ,Q) or 0 ≤ d(µ,Q) <
d(x, µ), we thus have for any x ∈ Rd and Q ∈ Rd×k

d(x,Q)2 ≤ 2 d(x, µ)2 + 2 d(µ,Q)2. (48)

By the same argument it also holds that for any x ∈ Rd and
Q ∈ Rd×k

d(µ,Q)2 ≤ 2 d(x, µ)2 + 2 d(x,Q)2.

By taking the expectation with regards to P and noting that
σ2 = EP

[
d(x, µ)2

]
<∞, we obtain for any Q ∈ Rd×k

d(µ,Q)2 ≤ 2σ2 + 2EP
[
d(x,Q)2

]
. (49)

Combining (48) and (49) implies that for any x ∈ Rd and
Q ∈ Rd×k

d(x,Q)2 ≤ 2 d(x, µ)2 + 4σ2 + 4EP
[
d(x,Q)2

]
≤
(

4 +
2 d(x, µ)2

σ2

)
σ2 + 4EP

[
d(x,Q)2

]
≤
(

4 +
2 d(x, µ)2

σ2

)(
σ2 + EP

[
d(x,Q)2

])
≤
(

8 +
4 d(x, µ)2

σ2

)
1

2

(
σ2 + EP

[
d(x,Q)2

])
.

By the definition of fQ(x), this proves (10). Finally we
have

EP
[
s(x)

2
]

= EP

[(
4 d(x, µ)2

σ2
+ 8

)2
]

= EP
[(

16 d(x, µ)4

σ4
+

64 d(x, µ)2

σ2
+ 64

)]
= 128 + 16

EP
[
d(x, µ)4

]
σ4

= 128 + 16M̂4.

which shows (11) and concludes the proof.


