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Most popular clustering approach (nonconvex)

SEEDING
Find initial cluster centers

FINE-TUNING
Iteratively improve solution

DETERMINES WHICH 
LOCAL MINIMUM 

IS REACHED

ENSURES THAT 
LOCAL MINIMUM  

IS REACHED

SEEDING IS CRITICAL!

MANY LOCAL MINIMA MAY EXIST
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SEEDING FINE-TUNING
Find initial cluster centers Iteratively improve solution

SLOW

NEED FOR FAST AND GOOD SEEDINGS

Lloyd’s algorithmk-Means++ seeding

??

SLOW

Mini-batch k-Means FAST
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PROVABLY GOOD

[Arthur et al., 2007] 

E[�km++]  8(log2 k + 2)�OPT

ALREADY AFTER SEEDING HARD TO PARALLELISE

BUT SLOW

k sequential passes!

O(nkd)

[Arthur et al., 2007] 
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p(x) =
d(x,C)2P

x

02X d(x0
, C)2

REQUIRES LINEAR PASS

Sample each point 
with probability

How can we efficiently  
approximate this step?
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where data points are states

whose stationary distribution is

p(x) =
d(x,C)2P

x

02X d(x0
, C)2

with a fast mixing time
GUARANTEES 
EFFICIENCY

RETURN 
CENTER

Goal: construct a Markov chain

GUARANTEES 
APPROXIMATION
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Return        as cluster centerxm

Repeat m times to create 
Markov chain of length m

APPROXIMATE SINGLE STEP 
OF D2 SAMPLING
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Sequentially construct k-1 independent Markov 
chains to obtain k-1 cluster centers

Sample first center uniformly

Compute proposal distribution q(x)

Approximation of k-Means++ seeding

EFFICIENT IF M IS SMALL ENOUGH 
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Misses small, far away clusters

Requires assumptions on data 
or approach fails

Uniform proposal:

q(x) =
1

n

NEVER PROPOSED

[Bachem et al., 2016] 
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BIASED TOWARDS 
FAR AWAY POINTS

[This paper] 

Provably good w/o assumptions

Nonuniform proposal:

q(x) =
1

2n
+

1

2

d(x, c1)2P
x

02X d(x0
, c1)2

COMPUTED ONCE IN 
SINGLE LINEAR PASS

Works really well empirically
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Choose an error tolerance ✏ > 0

m = 1 +

8

✏
log

4k

✏
Run algorithm with

O
✓
nd+

1

✏
k2d log

k

✏

◆
Total runtime:

E[�afk-mc2
]  8(log2 k + 2)�OPT + ✏Var(X )

Expected solution quality: APPROXIMATION

SAME AS K-MEANS++

FASTER  
THAN

O(nkd)

INDEPENDENT OF 
 DATA SET SIZE
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PYTHON IMPLEMENTATION
Available at olivierbachem.ch or with 

pip install kmc2

FEATURES
drop-in replacement for k-means++

easy to use (2 lines)

compatible with scikit-learn
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