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k-Means clustering

Most popular clustering approach (nonconvex)
MANY LOCAL MINIMA MAY EXIST

SEEDING

FiInd Iinitial cluster centers

~

J

DETERMINES WHICH
LOCAL MINIMUM
IS REACHED

SN

-

.

FINE-TUNING

teratively improve solution

J

ENSURES THAT
LOCAL MINIMUM
IS REACHED

SEEDING IS CRITICAL!
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k-Means algorithms
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SEEDING

FiInd Iinitial cluster centers

J

k-Means++ seeding
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J

Lloyd's algorithm

SLOW

Mini-batch k-Means FAST

NEED FOR FAST AND GOOD SEEDINGS
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k-Means++ seeding [Arthur et al, 2007
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k-Means++ seeding [Arthur et al, 2007
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k-Means++ seeding [Arthur et al, 2007

PROVABLY GOOD BUT SLOW

L Qe | < 8(logy k + 2) dopr O(nkd)

ALREADY AFTER SEEDING HARD TO PARALLELISE
| Arthur et al., 2007] k sequential passes!
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Single round of D*-sampling

Ly Sample each point
with probability
d(z, C)?
P\L) = ;
( ) ZCB’EX d(fE ,C)Q

(») How can we efficiently o0

approximate this step?
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Markov chain construction

Markov chain of length m

M Return m as cluster center
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Algorithm

L Sample first center uniformly

il Compute proposal distribution g(x)

> Sequentially construct k-1 independent Markov
chains to obtain k-1 cluster centers

) Approximation of k-Means++ seeding
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K-MC? |[Bachem etal, 2016]

ol Uniform proposal:

/N Misses small, far away clusters

;' Requires assumptions on data | (@ @& ——
5 * ®® \everpProOPOSED | ®
or approach fails e CX)
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doil Nonuniform proposal:

1 1 d(z,c1)?

Q(x) — 2n I 2 ZCC/EX d(x/761)2
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Assumption Free K-MC? |[This paper|

hl Nonuniform proposal: f . o o )
q(x) = L 1 d(@a) c e

on 2) ex d@,cr)? ® o o o

COMPUTED ONCE IN

SINGLE LINEAR PASS
& Provably good w/o assumptions

®@® BIASED TOWARDS O

&) Works really well empirically ® "AR AWAY POINTS @@ y
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Main theoretical result

(?) Choose an error tolerance ¢ > 0

3 4k  INDEPENDENT OF

@ Run algorithm with m =1+ — 5 log — SATA SET S|7E

—~————

D Expected solution quality: PPROXIMATION
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Main theoretical result

(?) Choose an error tolerance ¢ > 0

Run algorithm with m =1+ —

3

€

4k INDEP

log —

—~————

D Expected solution quality:

. 1
Total runtime: O (nd + ~k*dlog
€

k

€

9

=N

DENT OF

DATA SET SIZ

PPROXIMATION

[¢AFK MC? ] < 8(10g2 k -+ 2 ¢DPT —|‘m

SAME AS K-MEANS++

FASTER
THAN

O(nkd)
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Error vs time tradeoff
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O This repository Pull requests Issues Gist A +~ v
obachem / kmc2 @® Unwatch~ 1 % Star 1 YFork O
<> Code Issues 0 Pull requests 0 Projects 0 Wiki Pulse Graphs Settings

Cython implementation of k-MC2 and AFK-MC2 seeding — Edit

0 1 commit I 1 branch L 0 releases 22 1 contributor

Branch: master v New pull request Create new file  Upload files  Find file

obachem Initial release Latest commit 6cf35aa 23 days ago
[E) .qgitignore Initial release 23 days ago
[E) README.md Initial release 23 days ago
[E) kmc2.c Initial release 23 days ago
E) kmc2.pyx Initial release 23 days ago
&) setup.py Initial release 23 days ago
) test.py Initial release 23 days ago

README.md

Fast and Provably Good Seedings for k-Means using k-MC"2
and AFK-MC"2

Introduction

The package provides a Cython implementation of the algorithms k-mcr2 and Ark-mMc~2 described in the two papers:

Approximate K-Means++ in Sublinear Time. Olivier Bachem, Mario Lucic, S. Hamed Hassani and Andreas
Krause. In Proc. Conference on Artificial Intelligence (AAAIl), 2016.

Fast and Provably Good Seedings for k-Means. Olivier Bachem, Mario Lucic, S. Hamed Hassani and Andreas
Krause. To appear in Neural Information Processing Systems (NIPS), 2016.

The implementation is compatible with Python 2.7.

Code

PYTHON IMPLEMENTATION

Availlable at olivierbaochem.ch or with

pip install kmc2

FEATURES

() drop-in replacement for k-means++

& easy to use (2 lines)

) compatible with scikit-learn
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ETH:zurich

Fast and Provably Good Seedings for k-Means (0093 | e

Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause

K-MEANS CLUSTERING

Most popular clustering appreach (nonconvex)
MANY LOCAL MINIMA MAY EXIST!

SEEDING => FINE-TUNING

Find inital chuster conters Iteratively imorove solution

BACKGROUND

UNIFORM SEEDING

Sample initial cluster centers uniformly at
random from original data set

ISSUES
" € Denseareas
i oversampled
. - © Small clusters
o missed despite
e © high error
Fast but soiution con be arbitrarily bad

© Need for a fast and performant seeding algorithm

K-MEANS++ / D2-SAMPLING

Sample first cluster center at random

"

Add additional centers using p(z) x d(z,C)

B S L
s A
1. e
— X s s 287
| L \
A X

Provably good solutions but slow, ie. O(nkd)

EFFICIENT SEEDING USING MCMC

DETERMINES WHICH ENSURES THAT
LOCAL MINIMUM LOCAL MINIMUM
IS REACHED 5 REACHED
PROBLEM
Global minimum Local minimum
:'1'
.'i v
INTUITION
Exact D*-sampling is "'
expensive since we need to ik
process the entire data set B
in each of the k rounds a
APPROACH
Goal: construct a Markov chain
) where data points are states
) whose stationary distribution is
N &z, C)P
R exdi O

© with a fast mixing time
GUARANTEES A FAST APPROXIMATION!

ASSUMPTION FREE K-MC?

&l Nonuniform proposal:
1 1 dir,ey)?
xz) = - <
W)= an 255, _dir.ar)?
COMPUTED ONCE IN
SINGLE LINEAR PASS

@ Provably good w/o assumptions
&Y Works well on "all" data sets

© Ensures fast and provably good seedings

MARKOV CHAIN CONSTRUCTION
Sample point x; uniformly at random

Forj=1,2,...m:
Sample point y, from “some” g(x) and
accept it as new state x; with probability
) d(y;,C)? q(t,-x))
1, Lo Dodol
- ( d(zi-1,C) qlys)

uf !
i Rt

a a

ANALYSIS
MAIN RESULT

(@) Choose an error tolerance « > 0
ks

5
B Runalgorithmwith m « 1 + e

————
% Expected solution quality:  amscxmancs
El0usn scr] < [8(0a & + 2o+ Var( X))

SAME AS K-MEANS++

(5 Total runtime: o(-d. :k’dh;:‘)

EXPERIMENTAL RESULTS
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ALGORITHM

4§ Sample first center uniformly

7 Construct k-1 independent Markov
chain to obtain k-1 cluster centers
v

TOTAL COMPLEXITY  O(mk’d) Jo00"

K-MC?  [Bachem et al., 2016)
Jd Uniform proposal: ¢(x) = 'l—'
/A Misses small, far away clusters

& Only works with assumptions on data

e (e Lt S, e, | ot 4 B At S S B M 4

PROOF SKETCH
1. Analyze mixing time of Markov chain

p(z|C) D-SAMPUNG
We bound max
zeX g(x) PROPOSAL

KEY INSIGHT FOR SINGLE ITERATION
if ﬂ'l?l+1101§i then
€ €2

do(d) < &0, (X) or
GOOD SOLUTION

llp— ﬁ‘::;”rv <€
GOOD APPROXIMATION

2. Analyze solution guality across iterations

CODE

Fast Python implementation available at
olivierbachem.ch or on PyPl with

pip install kmc2
FEATURES

2 drop-in replacement for k-Means++
() easy to use (2 lines)
) compatible with scikit-learn

seeding = kme2(X ¥

mocel » MiniBatchkMeanslk, int=scedngl X}
rew_terters = model duster_oerters

Poster

# 1 /5

TODAY

o 10 9.50 PM




Appendix




Training error

Holdout error

Fast and Provably Good Seedings for k-Means

Comparison to k-Means|| [Bachem et al, 2016
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